| Step |
Hyp |
Ref |
Expression |
| 1 |
|
helsh |
⊢ ℋ ∈ Sℋ |
| 2 |
|
shocel |
⊢ ( ℋ ∈ Sℋ → ( 𝑥 ∈ ( ⊥ ‘ ℋ ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 𝑥 ∈ ( ⊥ ‘ ℋ ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ) |
| 4 |
3
|
simprbi |
⊢ ( 𝑥 ∈ ( ⊥ ‘ ℋ ) → ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) |
| 5 |
|
shocss |
⊢ ( ℋ ∈ Sℋ → ( ⊥ ‘ ℋ ) ⊆ ℋ ) |
| 6 |
1 5
|
ax-mp |
⊢ ( ⊥ ‘ ℋ ) ⊆ ℋ |
| 7 |
6
|
sseli |
⊢ ( 𝑥 ∈ ( ⊥ ‘ ℋ ) → 𝑥 ∈ ℋ ) |
| 8 |
|
hial0 |
⊢ ( 𝑥 ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = 0 ↔ 𝑥 = 0ℎ ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝑥 ∈ ( ⊥ ‘ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = 0 ↔ 𝑥 = 0ℎ ) ) |
| 10 |
4 9
|
mpbid |
⊢ ( 𝑥 ∈ ( ⊥ ‘ ℋ ) → 𝑥 = 0ℎ ) |
| 11 |
|
elch0 |
⊢ ( 𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ ) |
| 12 |
10 11
|
sylibr |
⊢ ( 𝑥 ∈ ( ⊥ ‘ ℋ ) → 𝑥 ∈ 0ℋ ) |
| 13 |
12
|
ssriv |
⊢ ( ⊥ ‘ ℋ ) ⊆ 0ℋ |
| 14 |
|
h0elsh |
⊢ 0ℋ ∈ Sℋ |
| 15 |
|
shococss |
⊢ ( 0ℋ ∈ Sℋ → 0ℋ ⊆ ( ⊥ ‘ ( ⊥ ‘ 0ℋ ) ) ) |
| 16 |
14 15
|
ax-mp |
⊢ 0ℋ ⊆ ( ⊥ ‘ ( ⊥ ‘ 0ℋ ) ) |
| 17 |
|
choc0 |
⊢ ( ⊥ ‘ 0ℋ ) = ℋ |
| 18 |
17
|
fveq2i |
⊢ ( ⊥ ‘ ( ⊥ ‘ 0ℋ ) ) = ( ⊥ ‘ ℋ ) |
| 19 |
16 18
|
sseqtri |
⊢ 0ℋ ⊆ ( ⊥ ‘ ℋ ) |
| 20 |
13 19
|
eqssi |
⊢ ( ⊥ ‘ ℋ ) = 0ℋ |