| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐴  ·ih  𝑥 )  =  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 2 | 1 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝐴  ·ih  𝑥 )  =  0  ↔  ( 𝐴  ·ih  𝐴 )  =  0 ) ) | 
						
							| 3 | 2 | rspcv | ⊢ ( 𝐴  ∈   ℋ  →  ( ∀ 𝑥  ∈   ℋ ( 𝐴  ·ih  𝑥 )  =  0  →  ( 𝐴  ·ih  𝐴 )  =  0 ) ) | 
						
							| 4 |  | his6 | ⊢ ( 𝐴  ∈   ℋ  →  ( ( 𝐴  ·ih  𝐴 )  =  0  ↔  𝐴  =  0ℎ ) ) | 
						
							| 5 | 3 4 | sylibd | ⊢ ( 𝐴  ∈   ℋ  →  ( ∀ 𝑥  ∈   ℋ ( 𝐴  ·ih  𝑥 )  =  0  →  𝐴  =  0ℎ ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝐴  =  0ℎ  →  ( 𝐴  ·ih  𝑥 )  =  ( 0ℎ  ·ih  𝑥 ) ) | 
						
							| 7 |  | hi01 | ⊢ ( 𝑥  ∈   ℋ  →  ( 0ℎ  ·ih  𝑥 )  =  0 ) | 
						
							| 8 | 6 7 | sylan9eq | ⊢ ( ( 𝐴  =  0ℎ  ∧  𝑥  ∈   ℋ )  →  ( 𝐴  ·ih  𝑥 )  =  0 ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝐴  =  0ℎ  →  ( 𝑥  ∈   ℋ  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  =  0ℎ  →  ( 𝑥  ∈   ℋ  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) ) | 
						
							| 11 | 10 | ralrimdv | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  =  0ℎ  →  ∀ 𝑥  ∈   ℋ ( 𝐴  ·ih  𝑥 )  =  0 ) ) | 
						
							| 12 | 5 11 | impbid | ⊢ ( 𝐴  ∈   ℋ  →  ( ∀ 𝑥  ∈   ℋ ( 𝐴  ·ih  𝑥 )  =  0  ↔  𝐴  =  0ℎ ) ) |