Metamath Proof Explorer


Theorem choc0

Description: The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion choc0 ( ⊥ ‘ 0 ) = ℋ

Proof

Step Hyp Ref Expression
1 h0elsh 0S
2 shocel ( 0S → ( 𝑥 ∈ ( ⊥ ‘ 0 ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 0 ( 𝑥 ·ih 𝑦 ) = 0 ) ) )
3 1 2 ax-mp ( 𝑥 ∈ ( ⊥ ‘ 0 ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 0 ( 𝑥 ·ih 𝑦 ) = 0 ) )
4 hi02 ( 𝑥 ∈ ℋ → ( 𝑥 ·ih 0 ) = 0 )
5 df-ral ( ∀ 𝑦 ∈ 0 ( 𝑥 ·ih 𝑦 ) = 0 ↔ ∀ 𝑦 ( 𝑦 ∈ 0 → ( 𝑥 ·ih 𝑦 ) = 0 ) )
6 elch0 ( 𝑦 ∈ 0𝑦 = 0 )
7 6 imbi1i ( ( 𝑦 ∈ 0 → ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ( 𝑦 = 0 → ( 𝑥 ·ih 𝑦 ) = 0 ) )
8 7 albii ( ∀ 𝑦 ( 𝑦 ∈ 0 → ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ∀ 𝑦 ( 𝑦 = 0 → ( 𝑥 ·ih 𝑦 ) = 0 ) )
9 ax-hv0cl 0 ∈ ℋ
10 9 elexi 0 ∈ V
11 oveq2 ( 𝑦 = 0 → ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ·ih 0 ) )
12 11 eqeq1d ( 𝑦 = 0 → ( ( 𝑥 ·ih 𝑦 ) = 0 ↔ ( 𝑥 ·ih 0 ) = 0 ) )
13 10 12 ceqsalv ( ∀ 𝑦 ( 𝑦 = 0 → ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ( 𝑥 ·ih 0 ) = 0 )
14 8 13 bitri ( ∀ 𝑦 ( 𝑦 ∈ 0 → ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ( 𝑥 ·ih 0 ) = 0 )
15 5 14 bitri ( ∀ 𝑦 ∈ 0 ( 𝑥 ·ih 𝑦 ) = 0 ↔ ( 𝑥 ·ih 0 ) = 0 )
16 4 15 sylibr ( 𝑥 ∈ ℋ → ∀ 𝑦 ∈ 0 ( 𝑥 ·ih 𝑦 ) = 0 )
17 abai ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 0 ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑥 ∈ ℋ → ∀ 𝑦 ∈ 0 ( 𝑥 ·ih 𝑦 ) = 0 ) ) )
18 16 17 mpbiran2 ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 0 ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ 𝑥 ∈ ℋ )
19 3 18 bitri ( 𝑥 ∈ ( ⊥ ‘ 0 ) ↔ 𝑥 ∈ ℋ )
20 19 eqriv ( ⊥ ‘ 0 ) = ℋ