Step |
Hyp |
Ref |
Expression |
1 |
|
pjima.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
pjima.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1
|
sheli |
⊢ ( 𝑣 ∈ 𝐴 → 𝑣 ∈ ℋ ) |
4 |
|
pjeq |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑣 ) = 𝑢 ↔ ( 𝑢 ∈ 𝐵 ∧ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 +ℎ 𝑤 ) ) ) ) |
5 |
2 3 4
|
sylancr |
⊢ ( 𝑣 ∈ 𝐴 → ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑣 ) = 𝑢 ↔ ( 𝑢 ∈ 𝐵 ∧ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 +ℎ 𝑤 ) ) ) ) |
6 |
|
ibar |
⊢ ( 𝑢 ∈ 𝐵 → ( ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 +ℎ 𝑤 ) ↔ ( 𝑢 ∈ 𝐵 ∧ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 +ℎ 𝑤 ) ) ) ) |
7 |
6
|
bicomd |
⊢ ( 𝑢 ∈ 𝐵 → ( ( 𝑢 ∈ 𝐵 ∧ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 +ℎ 𝑤 ) ) ↔ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 +ℎ 𝑤 ) ) ) |
8 |
5 7
|
sylan9bbr |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴 ) → ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑣 ) = 𝑢 ↔ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 +ℎ 𝑤 ) ) ) |
9 |
2
|
cheli |
⊢ ( 𝑢 ∈ 𝐵 → 𝑢 ∈ ℋ ) |
10 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
11 |
10
|
cheli |
⊢ ( 𝑤 ∈ ( ⊥ ‘ 𝐵 ) → 𝑤 ∈ ℋ ) |
12 |
|
hvsubadd |
⊢ ( ( 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑣 −ℎ 𝑤 ) = 𝑢 ↔ ( 𝑤 +ℎ 𝑢 ) = 𝑣 ) ) |
13 |
12
|
3comr |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑣 −ℎ 𝑤 ) = 𝑢 ↔ ( 𝑤 +ℎ 𝑢 ) = 𝑣 ) ) |
14 |
|
ax-hvcom |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑢 +ℎ 𝑤 ) = ( 𝑤 +ℎ 𝑢 ) ) |
15 |
14
|
3adant2 |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑢 +ℎ 𝑤 ) = ( 𝑤 +ℎ 𝑢 ) ) |
16 |
15
|
eqeq1d |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑢 +ℎ 𝑤 ) = 𝑣 ↔ ( 𝑤 +ℎ 𝑢 ) = 𝑣 ) ) |
17 |
13 16
|
bitr4d |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑣 −ℎ 𝑤 ) = 𝑢 ↔ ( 𝑢 +ℎ 𝑤 ) = 𝑣 ) ) |
18 |
9 3 11 17
|
syl3an |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) ) → ( ( 𝑣 −ℎ 𝑤 ) = 𝑢 ↔ ( 𝑢 +ℎ 𝑤 ) = 𝑣 ) ) |
19 |
|
eqcom |
⊢ ( 𝑢 = ( 𝑣 −ℎ 𝑤 ) ↔ ( 𝑣 −ℎ 𝑤 ) = 𝑢 ) |
20 |
|
eqcom |
⊢ ( 𝑣 = ( 𝑢 +ℎ 𝑤 ) ↔ ( 𝑢 +ℎ 𝑤 ) = 𝑣 ) |
21 |
18 19 20
|
3bitr4g |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) ) → ( 𝑢 = ( 𝑣 −ℎ 𝑤 ) ↔ 𝑣 = ( 𝑢 +ℎ 𝑤 ) ) ) |
22 |
21
|
3expa |
⊢ ( ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) ) → ( 𝑢 = ( 𝑣 −ℎ 𝑤 ) ↔ 𝑣 = ( 𝑢 +ℎ 𝑤 ) ) ) |
23 |
22
|
rexbidva |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴 ) → ( ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑢 = ( 𝑣 −ℎ 𝑤 ) ↔ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 +ℎ 𝑤 ) ) ) |
24 |
8 23
|
bitr4d |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴 ) → ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑣 ) = 𝑢 ↔ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑢 = ( 𝑣 −ℎ 𝑤 ) ) ) |
25 |
24
|
rexbidva |
⊢ ( 𝑢 ∈ 𝐵 → ( ∃ 𝑣 ∈ 𝐴 ( ( projℎ ‘ 𝐵 ) ‘ 𝑣 ) = 𝑢 ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑢 = ( 𝑣 −ℎ 𝑤 ) ) ) |
26 |
2
|
pjfni |
⊢ ( projℎ ‘ 𝐵 ) Fn ℋ |
27 |
1
|
shssii |
⊢ 𝐴 ⊆ ℋ |
28 |
|
fvelimab |
⊢ ( ( ( projℎ ‘ 𝐵 ) Fn ℋ ∧ 𝐴 ⊆ ℋ ) → ( 𝑢 ∈ ( ( projℎ ‘ 𝐵 ) “ 𝐴 ) ↔ ∃ 𝑣 ∈ 𝐴 ( ( projℎ ‘ 𝐵 ) ‘ 𝑣 ) = 𝑢 ) ) |
29 |
26 27 28
|
mp2an |
⊢ ( 𝑢 ∈ ( ( projℎ ‘ 𝐵 ) “ 𝐴 ) ↔ ∃ 𝑣 ∈ 𝐴 ( ( projℎ ‘ 𝐵 ) ‘ 𝑣 ) = 𝑢 ) |
30 |
10
|
chshii |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Sℋ |
31 |
|
shsel3 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Sℋ ) → ( 𝑢 ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐵 ) ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑢 = ( 𝑣 −ℎ 𝑤 ) ) ) |
32 |
1 30 31
|
mp2an |
⊢ ( 𝑢 ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐵 ) ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑢 = ( 𝑣 −ℎ 𝑤 ) ) |
33 |
25 29 32
|
3bitr4g |
⊢ ( 𝑢 ∈ 𝐵 → ( 𝑢 ∈ ( ( projℎ ‘ 𝐵 ) “ 𝐴 ) ↔ 𝑢 ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
34 |
33
|
pm5.32ri |
⊢ ( ( 𝑢 ∈ ( ( projℎ ‘ 𝐵 ) “ 𝐴 ) ∧ 𝑢 ∈ 𝐵 ) ↔ ( 𝑢 ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐵 ) ) ∧ 𝑢 ∈ 𝐵 ) ) |
35 |
|
imassrn |
⊢ ( ( projℎ ‘ 𝐵 ) “ 𝐴 ) ⊆ ran ( projℎ ‘ 𝐵 ) |
36 |
2
|
pjrni |
⊢ ran ( projℎ ‘ 𝐵 ) = 𝐵 |
37 |
35 36
|
sseqtri |
⊢ ( ( projℎ ‘ 𝐵 ) “ 𝐴 ) ⊆ 𝐵 |
38 |
37
|
sseli |
⊢ ( 𝑢 ∈ ( ( projℎ ‘ 𝐵 ) “ 𝐴 ) → 𝑢 ∈ 𝐵 ) |
39 |
38
|
pm4.71i |
⊢ ( 𝑢 ∈ ( ( projℎ ‘ 𝐵 ) “ 𝐴 ) ↔ ( 𝑢 ∈ ( ( projℎ ‘ 𝐵 ) “ 𝐴 ) ∧ 𝑢 ∈ 𝐵 ) ) |
40 |
|
elin |
⊢ ( 𝑢 ∈ ( ( 𝐴 +ℋ ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 ) ↔ ( 𝑢 ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐵 ) ) ∧ 𝑢 ∈ 𝐵 ) ) |
41 |
34 39 40
|
3bitr4i |
⊢ ( 𝑢 ∈ ( ( projℎ ‘ 𝐵 ) “ 𝐴 ) ↔ 𝑢 ∈ ( ( 𝐴 +ℋ ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 ) ) |
42 |
41
|
eqriv |
⊢ ( ( projℎ ‘ 𝐵 ) “ 𝐴 ) = ( ( 𝐴 +ℋ ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 ) |