Metamath Proof Explorer


Theorem pjimai

Description: The image of a projection. Lemma 5 in Daniel Lehmann, "A presentation of Quantum Logic based on anand then connective", https://doi.org/10.48550/arXiv.quant-ph/0701113 . (Contributed by NM, 20-Jan-2007) (New usage is discouraged.)

Ref Expression
Hypotheses pjima.1 𝐴S
pjima.2 𝐵C
Assertion pjimai ( ( proj𝐵 ) “ 𝐴 ) = ( ( 𝐴 + ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 )

Proof

Step Hyp Ref Expression
1 pjima.1 𝐴S
2 pjima.2 𝐵C
3 1 sheli ( 𝑣𝐴𝑣 ∈ ℋ )
4 pjeq ( ( 𝐵C𝑣 ∈ ℋ ) → ( ( ( proj𝐵 ) ‘ 𝑣 ) = 𝑢 ↔ ( 𝑢𝐵 ∧ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 + 𝑤 ) ) ) )
5 2 3 4 sylancr ( 𝑣𝐴 → ( ( ( proj𝐵 ) ‘ 𝑣 ) = 𝑢 ↔ ( 𝑢𝐵 ∧ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 + 𝑤 ) ) ) )
6 ibar ( 𝑢𝐵 → ( ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 + 𝑤 ) ↔ ( 𝑢𝐵 ∧ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 + 𝑤 ) ) ) )
7 6 bicomd ( 𝑢𝐵 → ( ( 𝑢𝐵 ∧ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 + 𝑤 ) ) ↔ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 + 𝑤 ) ) )
8 5 7 sylan9bbr ( ( 𝑢𝐵𝑣𝐴 ) → ( ( ( proj𝐵 ) ‘ 𝑣 ) = 𝑢 ↔ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 + 𝑤 ) ) )
9 2 cheli ( 𝑢𝐵𝑢 ∈ ℋ )
10 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
11 10 cheli ( 𝑤 ∈ ( ⊥ ‘ 𝐵 ) → 𝑤 ∈ ℋ )
12 hvsubadd ( ( 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑣 𝑤 ) = 𝑢 ↔ ( 𝑤 + 𝑢 ) = 𝑣 ) )
13 12 3comr ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑣 𝑤 ) = 𝑢 ↔ ( 𝑤 + 𝑢 ) = 𝑣 ) )
14 ax-hvcom ( ( 𝑢 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑢 + 𝑤 ) = ( 𝑤 + 𝑢 ) )
15 14 3adant2 ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑢 + 𝑤 ) = ( 𝑤 + 𝑢 ) )
16 15 eqeq1d ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑢 + 𝑤 ) = 𝑣 ↔ ( 𝑤 + 𝑢 ) = 𝑣 ) )
17 13 16 bitr4d ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑣 𝑤 ) = 𝑢 ↔ ( 𝑢 + 𝑤 ) = 𝑣 ) )
18 9 3 11 17 syl3an ( ( 𝑢𝐵𝑣𝐴𝑤 ∈ ( ⊥ ‘ 𝐵 ) ) → ( ( 𝑣 𝑤 ) = 𝑢 ↔ ( 𝑢 + 𝑤 ) = 𝑣 ) )
19 eqcom ( 𝑢 = ( 𝑣 𝑤 ) ↔ ( 𝑣 𝑤 ) = 𝑢 )
20 eqcom ( 𝑣 = ( 𝑢 + 𝑤 ) ↔ ( 𝑢 + 𝑤 ) = 𝑣 )
21 18 19 20 3bitr4g ( ( 𝑢𝐵𝑣𝐴𝑤 ∈ ( ⊥ ‘ 𝐵 ) ) → ( 𝑢 = ( 𝑣 𝑤 ) ↔ 𝑣 = ( 𝑢 + 𝑤 ) ) )
22 21 3expa ( ( ( 𝑢𝐵𝑣𝐴 ) ∧ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) ) → ( 𝑢 = ( 𝑣 𝑤 ) ↔ 𝑣 = ( 𝑢 + 𝑤 ) ) )
23 22 rexbidva ( ( 𝑢𝐵𝑣𝐴 ) → ( ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑢 = ( 𝑣 𝑤 ) ↔ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑣 = ( 𝑢 + 𝑤 ) ) )
24 8 23 bitr4d ( ( 𝑢𝐵𝑣𝐴 ) → ( ( ( proj𝐵 ) ‘ 𝑣 ) = 𝑢 ↔ ∃ 𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑢 = ( 𝑣 𝑤 ) ) )
25 24 rexbidva ( 𝑢𝐵 → ( ∃ 𝑣𝐴 ( ( proj𝐵 ) ‘ 𝑣 ) = 𝑢 ↔ ∃ 𝑣𝐴𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑢 = ( 𝑣 𝑤 ) ) )
26 2 pjfni ( proj𝐵 ) Fn ℋ
27 1 shssii 𝐴 ⊆ ℋ
28 fvelimab ( ( ( proj𝐵 ) Fn ℋ ∧ 𝐴 ⊆ ℋ ) → ( 𝑢 ∈ ( ( proj𝐵 ) “ 𝐴 ) ↔ ∃ 𝑣𝐴 ( ( proj𝐵 ) ‘ 𝑣 ) = 𝑢 ) )
29 26 27 28 mp2an ( 𝑢 ∈ ( ( proj𝐵 ) “ 𝐴 ) ↔ ∃ 𝑣𝐴 ( ( proj𝐵 ) ‘ 𝑣 ) = 𝑢 )
30 10 chshii ( ⊥ ‘ 𝐵 ) ∈ S
31 shsel3 ( ( 𝐴S ∧ ( ⊥ ‘ 𝐵 ) ∈ S ) → ( 𝑢 ∈ ( 𝐴 + ( ⊥ ‘ 𝐵 ) ) ↔ ∃ 𝑣𝐴𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑢 = ( 𝑣 𝑤 ) ) )
32 1 30 31 mp2an ( 𝑢 ∈ ( 𝐴 + ( ⊥ ‘ 𝐵 ) ) ↔ ∃ 𝑣𝐴𝑤 ∈ ( ⊥ ‘ 𝐵 ) 𝑢 = ( 𝑣 𝑤 ) )
33 25 29 32 3bitr4g ( 𝑢𝐵 → ( 𝑢 ∈ ( ( proj𝐵 ) “ 𝐴 ) ↔ 𝑢 ∈ ( 𝐴 + ( ⊥ ‘ 𝐵 ) ) ) )
34 33 pm5.32ri ( ( 𝑢 ∈ ( ( proj𝐵 ) “ 𝐴 ) ∧ 𝑢𝐵 ) ↔ ( 𝑢 ∈ ( 𝐴 + ( ⊥ ‘ 𝐵 ) ) ∧ 𝑢𝐵 ) )
35 imassrn ( ( proj𝐵 ) “ 𝐴 ) ⊆ ran ( proj𝐵 )
36 2 pjrni ran ( proj𝐵 ) = 𝐵
37 35 36 sseqtri ( ( proj𝐵 ) “ 𝐴 ) ⊆ 𝐵
38 37 sseli ( 𝑢 ∈ ( ( proj𝐵 ) “ 𝐴 ) → 𝑢𝐵 )
39 38 pm4.71i ( 𝑢 ∈ ( ( proj𝐵 ) “ 𝐴 ) ↔ ( 𝑢 ∈ ( ( proj𝐵 ) “ 𝐴 ) ∧ 𝑢𝐵 ) )
40 elin ( 𝑢 ∈ ( ( 𝐴 + ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 ) ↔ ( 𝑢 ∈ ( 𝐴 + ( ⊥ ‘ 𝐵 ) ) ∧ 𝑢𝐵 ) )
41 34 39 40 3bitr4i ( 𝑢 ∈ ( ( proj𝐵 ) “ 𝐴 ) ↔ 𝑢 ∈ ( ( 𝐴 + ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 ) )
42 41 eqriv ( ( proj𝐵 ) “ 𝐴 ) = ( ( 𝐴 + ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 )