| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shsel |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) ) |
| 2 |
|
id |
⊢ ( 𝐶 = ( 𝑥 +ℎ 𝑧 ) → 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) |
| 3 |
|
shel |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℋ ) |
| 4 |
|
shel |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ℋ ) |
| 5 |
|
hvaddsubval |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 6 |
3 4 5
|
syl2an |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 7 |
6
|
an4s |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 8 |
7
|
anassrs |
⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 9 |
2 8
|
sylan9eqr |
⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) → 𝐶 = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 10 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 11 |
|
shmulcl |
⊢ ( ( 𝐵 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
| 12 |
10 11
|
mp3an2 |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
| 13 |
12
|
adantll |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
| 14 |
13
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
| 15 |
|
oveq2 |
⊢ ( 𝑦 = ( - 1 ·ℎ 𝑧 ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 16 |
15
|
rspceeqv |
⊢ ( ( ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ∧ 𝐶 = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) → ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) |
| 17 |
14 16
|
sylan |
⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) → ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) |
| 18 |
9 17
|
syldan |
⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) → ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) |
| 19 |
18
|
rexlimdva2 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) → ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |
| 20 |
|
id |
⊢ ( 𝐶 = ( 𝑥 −ℎ 𝑦 ) → 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) |
| 21 |
|
shel |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℋ ) |
| 22 |
|
hvsubval |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 23 |
3 21 22
|
syl2an |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ Sℋ ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 24 |
23
|
an4s |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 25 |
24
|
anassrs |
⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 26 |
20 25
|
sylan9eqr |
⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) → 𝐶 = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 27 |
|
shmulcl |
⊢ ( ( 𝐵 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝑦 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ) |
| 28 |
10 27
|
mp3an2 |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑦 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ) |
| 29 |
28
|
adantll |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑦 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ) |
| 30 |
29
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ) |
| 31 |
|
oveq2 |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑦 ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 32 |
31
|
rspceeqv |
⊢ ( ( ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ∧ 𝐶 = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) |
| 33 |
30 32
|
sylan |
⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) |
| 34 |
26 33
|
syldan |
⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) |
| 35 |
34
|
rexlimdva2 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) → ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) ) |
| 36 |
19 35
|
impbid |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |
| 37 |
36
|
rexbidva |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |
| 38 |
1 37
|
bitrd |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |