Metamath Proof Explorer


Theorem shsel3

Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007) (New usage is discouraged.)

Ref Expression
Assertion shsel3 ASBSCA+BxAyBC=x-y

Proof

Step Hyp Ref Expression
1 shsel ASBSCA+BxAzBC=x+z
2 id C=x+zC=x+z
3 shel ASxAx
4 shel BSzBz
5 hvaddsubval xzx+z=x--1z
6 3 4 5 syl2an ASxABSzBx+z=x--1z
7 6 an4s ASBSxAzBx+z=x--1z
8 7 anassrs ASBSxAzBx+z=x--1z
9 2 8 sylan9eqr ASBSxAzBC=x+zC=x--1z
10 neg1cn 1
11 shmulcl BS1zB-1zB
12 10 11 mp3an2 BSzB-1zB
13 12 adantll ASBSzB-1zB
14 13 adantlr ASBSxAzB-1zB
15 oveq2 y=-1zx-y=x--1z
16 15 rspceeqv -1zBC=x--1zyBC=x-y
17 14 16 sylan ASBSxAzBC=x--1zyBC=x-y
18 9 17 syldan ASBSxAzBC=x+zyBC=x-y
19 18 rexlimdva2 ASBSxAzBC=x+zyBC=x-y
20 id C=x-yC=x-y
21 shel BSyBy
22 hvsubval xyx-y=x+-1y
23 3 21 22 syl2an ASxABSyBx-y=x+-1y
24 23 an4s ASBSxAyBx-y=x+-1y
25 24 anassrs ASBSxAyBx-y=x+-1y
26 20 25 sylan9eqr ASBSxAyBC=x-yC=x+-1y
27 shmulcl BS1yB-1yB
28 10 27 mp3an2 BSyB-1yB
29 28 adantll ASBSyB-1yB
30 29 adantlr ASBSxAyB-1yB
31 oveq2 z=-1yx+z=x+-1y
32 31 rspceeqv -1yBC=x+-1yzBC=x+z
33 30 32 sylan ASBSxAyBC=x+-1yzBC=x+z
34 26 33 syldan ASBSxAyBC=x-yzBC=x+z
35 34 rexlimdva2 ASBSxAyBC=x-yzBC=x+z
36 19 35 impbid ASBSxAzBC=x+zyBC=x-y
37 36 rexbidva ASBSxAzBC=x+zxAyBC=x-y
38 1 37 bitrd ASBSCA+BxAyBC=x-y