Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shsel3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsel | |
|
2 | id | |
|
3 | shel | |
|
4 | shel | |
|
5 | hvaddsubval | |
|
6 | 3 4 5 | syl2an | |
7 | 6 | an4s | |
8 | 7 | anassrs | |
9 | 2 8 | sylan9eqr | |
10 | neg1cn | |
|
11 | shmulcl | |
|
12 | 10 11 | mp3an2 | |
13 | 12 | adantll | |
14 | 13 | adantlr | |
15 | oveq2 | |
|
16 | 15 | rspceeqv | |
17 | 14 16 | sylan | |
18 | 9 17 | syldan | |
19 | 18 | rexlimdva2 | |
20 | id | |
|
21 | shel | |
|
22 | hvsubval | |
|
23 | 3 21 22 | syl2an | |
24 | 23 | an4s | |
25 | 24 | anassrs | |
26 | 20 25 | sylan9eqr | |
27 | shmulcl | |
|
28 | 10 27 | mp3an2 | |
29 | 28 | adantll | |
30 | 29 | adantlr | |
31 | oveq2 | |
|
32 | 31 | rspceeqv | |
33 | 30 32 | sylan | |
34 | 26 33 | syldan | |
35 | 34 | rexlimdva2 | |
36 | 19 35 | impbid | |
37 | 36 | rexbidva | |
38 | 1 37 | bitrd | |