Metamath Proof Explorer


Theorem shsel3

Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007) (New usage is discouraged.)

Ref Expression
Assertion shsel3 A S B S C A + B x A y B C = x - y

Proof

Step Hyp Ref Expression
1 shsel A S B S C A + B x A z B C = x + z
2 id C = x + z C = x + z
3 shel A S x A x
4 shel B S z B z
5 hvaddsubval x z x + z = x - -1 z
6 3 4 5 syl2an A S x A B S z B x + z = x - -1 z
7 6 an4s A S B S x A z B x + z = x - -1 z
8 7 anassrs A S B S x A z B x + z = x - -1 z
9 2 8 sylan9eqr A S B S x A z B C = x + z C = x - -1 z
10 neg1cn 1
11 shmulcl B S 1 z B -1 z B
12 10 11 mp3an2 B S z B -1 z B
13 12 adantll A S B S z B -1 z B
14 13 adantlr A S B S x A z B -1 z B
15 oveq2 y = -1 z x - y = x - -1 z
16 15 rspceeqv -1 z B C = x - -1 z y B C = x - y
17 14 16 sylan A S B S x A z B C = x - -1 z y B C = x - y
18 9 17 syldan A S B S x A z B C = x + z y B C = x - y
19 18 rexlimdva2 A S B S x A z B C = x + z y B C = x - y
20 id C = x - y C = x - y
21 shel B S y B y
22 hvsubval x y x - y = x + -1 y
23 3 21 22 syl2an A S x A B S y B x - y = x + -1 y
24 23 an4s A S B S x A y B x - y = x + -1 y
25 24 anassrs A S B S x A y B x - y = x + -1 y
26 20 25 sylan9eqr A S B S x A y B C = x - y C = x + -1 y
27 shmulcl B S 1 y B -1 y B
28 10 27 mp3an2 B S y B -1 y B
29 28 adantll A S B S y B -1 y B
30 29 adantlr A S B S x A y B -1 y B
31 oveq2 z = -1 y x + z = x + -1 y
32 31 rspceeqv -1 y B C = x + -1 y z B C = x + z
33 30 32 sylan A S B S x A y B C = x + -1 y z B C = x + z
34 26 33 syldan A S B S x A y B C = x - y z B C = x + z
35 34 rexlimdva2 A S B S x A y B C = x - y z B C = x + z
36 19 35 impbid A S B S x A z B C = x + z y B C = x - y
37 36 rexbidva A S B S x A z B C = x + z x A y B C = x - y
38 1 37 bitrd A S B S C A + B x A y B C = x - y