Metamath Proof Explorer


Theorem pjimai

Description: The image of a projection. Lemma 5 in Daniel Lehmann, "A presentation of Quantum Logic based on anand then connective", https://doi.org/10.48550/arXiv.quant-ph/0701113 . (Contributed by NM, 20-Jan-2007) (New usage is discouraged.)

Ref Expression
Hypotheses pjima.1 A S
pjima.2 B C
Assertion pjimai proj B A = A + B B

Proof

Step Hyp Ref Expression
1 pjima.1 A S
2 pjima.2 B C
3 1 sheli v A v
4 pjeq B C v proj B v = u u B w B v = u + w
5 2 3 4 sylancr v A proj B v = u u B w B v = u + w
6 ibar u B w B v = u + w u B w B v = u + w
7 6 bicomd u B u B w B v = u + w w B v = u + w
8 5 7 sylan9bbr u B v A proj B v = u w B v = u + w
9 2 cheli u B u
10 2 choccli B C
11 10 cheli w B w
12 hvsubadd v w u v - w = u w + u = v
13 12 3comr u v w v - w = u w + u = v
14 ax-hvcom u w u + w = w + u
15 14 3adant2 u v w u + w = w + u
16 15 eqeq1d u v w u + w = v w + u = v
17 13 16 bitr4d u v w v - w = u u + w = v
18 9 3 11 17 syl3an u B v A w B v - w = u u + w = v
19 eqcom u = v - w v - w = u
20 eqcom v = u + w u + w = v
21 18 19 20 3bitr4g u B v A w B u = v - w v = u + w
22 21 3expa u B v A w B u = v - w v = u + w
23 22 rexbidva u B v A w B u = v - w w B v = u + w
24 8 23 bitr4d u B v A proj B v = u w B u = v - w
25 24 rexbidva u B v A proj B v = u v A w B u = v - w
26 2 pjfni proj B Fn
27 1 shssii A
28 fvelimab proj B Fn A u proj B A v A proj B v = u
29 26 27 28 mp2an u proj B A v A proj B v = u
30 10 chshii B S
31 shsel3 A S B S u A + B v A w B u = v - w
32 1 30 31 mp2an u A + B v A w B u = v - w
33 25 29 32 3bitr4g u B u proj B A u A + B
34 33 pm5.32ri u proj B A u B u A + B u B
35 imassrn proj B A ran proj B
36 2 pjrni ran proj B = B
37 35 36 sseqtri proj B A B
38 37 sseli u proj B A u B
39 38 pm4.71i u proj B A u proj B A u B
40 elin u A + B B u A + B u B
41 34 39 40 3bitr4i u proj B A u A + B B
42 41 eqriv proj B A = A + B B