Metamath Proof Explorer


Theorem pjidmcoi

Description: A projection is idempotent. Property (ii) of Beran p. 109. (Contributed by NM, 1-Oct-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjidmco.1 H C
Assertion pjidmcoi proj H proj H = proj H

Proof

Step Hyp Ref Expression
1 pjidmco.1 H C
2 ssid H H
3 1 1 pjss2coi H H proj H proj H = proj H
4 2 3 mpbi proj H proj H = proj H