Metamath Proof Explorer


Theorem pjidmcoi

Description: A projection is idempotent. Property (ii) of Beran p. 109. (Contributed by NM, 1-Oct-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjidmco.1
|- H e. CH
Assertion pjidmcoi
|- ( ( projh ` H ) o. ( projh ` H ) ) = ( projh ` H )

Proof

Step Hyp Ref Expression
1 pjidmco.1
 |-  H e. CH
2 ssid
 |-  H C_ H
3 1 1 pjss2coi
 |-  ( H C_ H <-> ( ( projh ` H ) o. ( projh ` H ) ) = ( projh ` H ) )
4 2 3 mpbi
 |-  ( ( projh ` H ) o. ( projh ` H ) ) = ( projh ` H )