Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
|- G e. CH |
2 |
|
pjco.2 |
|- H e. CH |
3 |
2
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
4 |
1
|
pjfi |
|- ( projh ` G ) : ~H --> ~H |
5 |
|
hodval |
|- ( ( ( projh ` H ) : ~H --> ~H /\ ( projh ` G ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) ) |
6 |
3 4 5
|
mp3an12 |
|- ( x e. ~H -> ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) ) |
7 |
6
|
adantl |
|- ( ( G C_ H /\ x e. ~H ) -> ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) ) |
8 |
2 1
|
pjssmi |
|- ( x e. ~H -> ( G C_ H -> ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) ) ) |
9 |
8
|
impcom |
|- ( ( G C_ H /\ x e. ~H ) -> ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) ) |
10 |
7 9
|
eqtrd |
|- ( ( G C_ H /\ x e. ~H ) -> ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) ) |
11 |
10
|
ralrimiva |
|- ( G C_ H -> A. x e. ~H ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) ) |
12 |
3 4
|
hosubfni |
|- ( ( projh ` H ) -op ( projh ` G ) ) Fn ~H |
13 |
1
|
choccli |
|- ( _|_ ` G ) e. CH |
14 |
2 13
|
chincli |
|- ( H i^i ( _|_ ` G ) ) e. CH |
15 |
14
|
pjfni |
|- ( projh ` ( H i^i ( _|_ ` G ) ) ) Fn ~H |
16 |
|
eqfnfv |
|- ( ( ( ( projh ` H ) -op ( projh ` G ) ) Fn ~H /\ ( projh ` ( H i^i ( _|_ ` G ) ) ) Fn ~H ) -> ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) <-> A. x e. ~H ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) ) ) |
17 |
12 15 16
|
mp2an |
|- ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) <-> A. x e. ~H ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) ) |
18 |
11 17
|
sylibr |
|- ( G C_ H -> ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) ) |
19 |
14
|
pjige0i |
|- ( x e. ~H -> 0 <_ ( ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) .ih x ) ) |
20 |
19
|
adantl |
|- ( ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) /\ x e. ~H ) -> 0 <_ ( ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) .ih x ) ) |
21 |
|
fveq1 |
|- ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) -> ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) ) |
22 |
21
|
oveq1d |
|- ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) -> ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) = ( ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) .ih x ) ) |
23 |
22
|
adantr |
|- ( ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) /\ x e. ~H ) -> ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) = ( ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) .ih x ) ) |
24 |
20 23
|
breqtrrd |
|- ( ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) /\ x e. ~H ) -> 0 <_ ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) ) |
25 |
24
|
ralrimiva |
|- ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) -> A. x e. ~H 0 <_ ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) ) |
26 |
1 2
|
pjssposi |
|- ( A. x e. ~H 0 <_ ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) <-> G C_ H ) |
27 |
25 26
|
sylib |
|- ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) -> G C_ H ) |
28 |
18 27
|
impbii |
|- ( G C_ H <-> ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) ) |