Metamath Proof Explorer


Theorem pjssdif2i

Description: The projection subspace of the difference between two projectors. Part 2 of Theorem 29.3 of Halmos p. 48 (shortened with pjssposi ). (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1
|- G e. CH
pjco.2
|- H e. CH
Assertion pjssdif2i
|- ( G C_ H <-> ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) )

Proof

Step Hyp Ref Expression
1 pjco.1
 |-  G e. CH
2 pjco.2
 |-  H e. CH
3 2 pjfi
 |-  ( projh ` H ) : ~H --> ~H
4 1 pjfi
 |-  ( projh ` G ) : ~H --> ~H
5 hodval
 |-  ( ( ( projh ` H ) : ~H --> ~H /\ ( projh ` G ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) )
6 3 4 5 mp3an12
 |-  ( x e. ~H -> ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) )
7 6 adantl
 |-  ( ( G C_ H /\ x e. ~H ) -> ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) )
8 2 1 pjssmi
 |-  ( x e. ~H -> ( G C_ H -> ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) ) )
9 8 impcom
 |-  ( ( G C_ H /\ x e. ~H ) -> ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) )
10 7 9 eqtrd
 |-  ( ( G C_ H /\ x e. ~H ) -> ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) )
11 10 ralrimiva
 |-  ( G C_ H -> A. x e. ~H ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) )
12 3 4 hosubfni
 |-  ( ( projh ` H ) -op ( projh ` G ) ) Fn ~H
13 1 choccli
 |-  ( _|_ ` G ) e. CH
14 2 13 chincli
 |-  ( H i^i ( _|_ ` G ) ) e. CH
15 14 pjfni
 |-  ( projh ` ( H i^i ( _|_ ` G ) ) ) Fn ~H
16 eqfnfv
 |-  ( ( ( ( projh ` H ) -op ( projh ` G ) ) Fn ~H /\ ( projh ` ( H i^i ( _|_ ` G ) ) ) Fn ~H ) -> ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) <-> A. x e. ~H ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) ) )
17 12 15 16 mp2an
 |-  ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) <-> A. x e. ~H ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) )
18 11 17 sylibr
 |-  ( G C_ H -> ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) )
19 14 pjige0i
 |-  ( x e. ~H -> 0 <_ ( ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) .ih x ) )
20 19 adantl
 |-  ( ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) /\ x e. ~H ) -> 0 <_ ( ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) .ih x ) )
21 fveq1
 |-  ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) -> ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) )
22 21 oveq1d
 |-  ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) -> ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) = ( ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) .ih x ) )
23 22 adantr
 |-  ( ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) /\ x e. ~H ) -> ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) = ( ( ( projh ` ( H i^i ( _|_ ` G ) ) ) ` x ) .ih x ) )
24 20 23 breqtrrd
 |-  ( ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) /\ x e. ~H ) -> 0 <_ ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) )
25 24 ralrimiva
 |-  ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) -> A. x e. ~H 0 <_ ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) )
26 1 2 pjssposi
 |-  ( A. x e. ~H 0 <_ ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) <-> G C_ H )
27 25 26 sylib
 |-  ( ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) -> G C_ H )
28 18 27 impbii
 |-  ( G C_ H <-> ( ( projh ` H ) -op ( projh ` G ) ) = ( projh ` ( H i^i ( _|_ ` G ) ) ) )