| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hosmval | ⊢ ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 𝑆  +op  𝑇 )  =  ( 𝑥  ∈   ℋ  ↦  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) ) ) ) | 
						
							| 2 | 1 | fveq1d | ⊢ ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( ( 𝑆  +op  𝑇 ) ‘ 𝐴 )  =  ( ( 𝑥  ∈   ℋ  ↦  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) ) ) ‘ 𝐴 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑆 ‘ 𝑥 )  =  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝐴 ) ) | 
						
							| 5 | 3 4 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) )  =  ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑇 ‘ 𝐴 ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈   ℋ  ↦  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈   ℋ  ↦  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 7 |  | ovex | ⊢ ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑇 ‘ 𝐴 ) )  ∈  V | 
						
							| 8 | 5 6 7 | fvmpt | ⊢ ( 𝐴  ∈   ℋ  →  ( ( 𝑥  ∈   ℋ  ↦  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) ) ) ‘ 𝐴 )  =  ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑇 ‘ 𝐴 ) ) ) | 
						
							| 9 | 2 8 | sylan9eq | ⊢ ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  ∧  𝐴  ∈   ℋ )  →  ( ( 𝑆  +op  𝑇 ) ‘ 𝐴 )  =  ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑇 ‘ 𝐴 ) ) ) | 
						
							| 10 | 9 | 3impa | ⊢ ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈   ℋ )  →  ( ( 𝑆  +op  𝑇 ) ‘ 𝐴 )  =  ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑇 ‘ 𝐴 ) ) ) |