| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hosmval |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ) | 
						
							| 2 | 1 | fveq1d |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( S +op T ) ` A ) = ( ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ` A ) ) | 
						
							| 3 |  | fveq2 |  |-  ( x = A -> ( S ` x ) = ( S ` A ) ) | 
						
							| 4 |  | fveq2 |  |-  ( x = A -> ( T ` x ) = ( T ` A ) ) | 
						
							| 5 | 3 4 | oveq12d |  |-  ( x = A -> ( ( S ` x ) +h ( T ` x ) ) = ( ( S ` A ) +h ( T ` A ) ) ) | 
						
							| 6 |  | eqid |  |-  ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) = ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) | 
						
							| 7 |  | ovex |  |-  ( ( S ` A ) +h ( T ` A ) ) e. _V | 
						
							| 8 | 5 6 7 | fvmpt |  |-  ( A e. ~H -> ( ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ` A ) = ( ( S ` A ) +h ( T ` A ) ) ) | 
						
							| 9 | 2 8 | sylan9eq |  |-  ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S +op T ) ` A ) = ( ( S ` A ) +h ( T ` A ) ) ) | 
						
							| 10 | 9 | 3impa |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S +op T ) ` A ) = ( ( S ` A ) +h ( T ` A ) ) ) |