| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidmco.1 |
|- H e. CH |
| 2 |
|
axpjpj |
|- ( ( H e. CH /\ x e. ~H ) -> x = ( ( ( projh ` H ) ` x ) +h ( ( projh ` ( _|_ ` H ) ) ` x ) ) ) |
| 3 |
1 2
|
mpan |
|- ( x e. ~H -> x = ( ( ( projh ` H ) ` x ) +h ( ( projh ` ( _|_ ` H ) ) ` x ) ) ) |
| 4 |
|
pjch1 |
|- ( x e. ~H -> ( ( projh ` ~H ) ` x ) = x ) |
| 5 |
1
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
| 6 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
| 7 |
6
|
pjfi |
|- ( projh ` ( _|_ ` H ) ) : ~H --> ~H |
| 8 |
|
hosval |
|- ( ( ( projh ` H ) : ~H --> ~H /\ ( projh ` ( _|_ ` H ) ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) ` x ) = ( ( ( projh ` H ) ` x ) +h ( ( projh ` ( _|_ ` H ) ) ` x ) ) ) |
| 9 |
5 7 8
|
mp3an12 |
|- ( x e. ~H -> ( ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) ` x ) = ( ( ( projh ` H ) ` x ) +h ( ( projh ` ( _|_ ` H ) ) ` x ) ) ) |
| 10 |
3 4 9
|
3eqtr4rd |
|- ( x e. ~H -> ( ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) ` x ) = ( ( projh ` ~H ) ` x ) ) |
| 11 |
10
|
rgen |
|- A. x e. ~H ( ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) ` x ) = ( ( projh ` ~H ) ` x ) |
| 12 |
5 7
|
hoaddcli |
|- ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) : ~H --> ~H |
| 13 |
|
helch |
|- ~H e. CH |
| 14 |
13
|
pjfi |
|- ( projh ` ~H ) : ~H --> ~H |
| 15 |
12 14
|
hoeqi |
|- ( A. x e. ~H ( ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) ` x ) = ( ( projh ` ~H ) ` x ) <-> ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) = ( projh ` ~H ) ) |
| 16 |
11 15
|
mpbi |
|- ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) = ( projh ` ~H ) |