Step |
Hyp |
Ref |
Expression |
1 |
|
pjidmco.1 |
|- H e. CH |
2 |
|
axpjpj |
|- ( ( H e. CH /\ x e. ~H ) -> x = ( ( ( projh ` H ) ` x ) +h ( ( projh ` ( _|_ ` H ) ) ` x ) ) ) |
3 |
1 2
|
mpan |
|- ( x e. ~H -> x = ( ( ( projh ` H ) ` x ) +h ( ( projh ` ( _|_ ` H ) ) ` x ) ) ) |
4 |
|
pjch1 |
|- ( x e. ~H -> ( ( projh ` ~H ) ` x ) = x ) |
5 |
1
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
6 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
7 |
6
|
pjfi |
|- ( projh ` ( _|_ ` H ) ) : ~H --> ~H |
8 |
|
hosval |
|- ( ( ( projh ` H ) : ~H --> ~H /\ ( projh ` ( _|_ ` H ) ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) ` x ) = ( ( ( projh ` H ) ` x ) +h ( ( projh ` ( _|_ ` H ) ) ` x ) ) ) |
9 |
5 7 8
|
mp3an12 |
|- ( x e. ~H -> ( ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) ` x ) = ( ( ( projh ` H ) ` x ) +h ( ( projh ` ( _|_ ` H ) ) ` x ) ) ) |
10 |
3 4 9
|
3eqtr4rd |
|- ( x e. ~H -> ( ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) ` x ) = ( ( projh ` ~H ) ` x ) ) |
11 |
10
|
rgen |
|- A. x e. ~H ( ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) ` x ) = ( ( projh ` ~H ) ` x ) |
12 |
5 7
|
hoaddcli |
|- ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) : ~H --> ~H |
13 |
|
helch |
|- ~H e. CH |
14 |
13
|
pjfi |
|- ( projh ` ~H ) : ~H --> ~H |
15 |
12 14
|
hoeqi |
|- ( A. x e. ~H ( ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) ` x ) = ( ( projh ` ~H ) ` x ) <-> ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) = ( projh ` ~H ) ) |
16 |
11 15
|
mpbi |
|- ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) = ( projh ` ~H ) |