Metamath Proof Explorer


Theorem pjoci

Description: Projection of orthocomplement. First part of Theorem 27.3 of Halmos p. 45. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjidmco.1
|- H e. CH
Assertion pjoci
|- ( ( projh ` ~H ) -op ( projh ` H ) ) = ( projh ` ( _|_ ` H ) )

Proof

Step Hyp Ref Expression
1 pjidmco.1
 |-  H e. CH
2 1 pjtoi
 |-  ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) = ( projh ` ~H )
3 helch
 |-  ~H e. CH
4 3 pjfi
 |-  ( projh ` ~H ) : ~H --> ~H
5 1 pjfi
 |-  ( projh ` H ) : ~H --> ~H
6 1 choccli
 |-  ( _|_ ` H ) e. CH
7 6 pjfi
 |-  ( projh ` ( _|_ ` H ) ) : ~H --> ~H
8 4 5 7 hodsi
 |-  ( ( ( projh ` ~H ) -op ( projh ` H ) ) = ( projh ` ( _|_ ` H ) ) <-> ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) = ( projh ` ~H ) )
9 2 8 mpbir
 |-  ( ( projh ` ~H ) -op ( projh ` H ) ) = ( projh ` ( _|_ ` H ) )