Step |
Hyp |
Ref |
Expression |
1 |
|
pjidmco.1 |
|- H e. CH |
2 |
1
|
pjtoi |
|- ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) = ( projh ` ~H ) |
3 |
|
helch |
|- ~H e. CH |
4 |
3
|
pjfi |
|- ( projh ` ~H ) : ~H --> ~H |
5 |
1
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
6 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
7 |
6
|
pjfi |
|- ( projh ` ( _|_ ` H ) ) : ~H --> ~H |
8 |
4 5 7
|
hodsi |
|- ( ( ( projh ` ~H ) -op ( projh ` H ) ) = ( projh ` ( _|_ ` H ) ) <-> ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) = ( projh ` ~H ) ) |
9 |
2 8
|
mpbir |
|- ( ( projh ` ~H ) -op ( projh ` H ) ) = ( projh ` ( _|_ ` H ) ) |