Step |
Hyp |
Ref |
Expression |
1 |
|
pjmfn |
⊢ projℎ Fn Cℋ |
2 |
|
fvelrnb |
⊢ ( projℎ Fn Cℋ → ( 𝑇 ∈ ran projℎ ↔ ∃ 𝑥 ∈ Cℋ ( projℎ ‘ 𝑥 ) = 𝑇 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 𝑇 ∈ ran projℎ ↔ ∃ 𝑥 ∈ Cℋ ( projℎ ‘ 𝑥 ) = 𝑇 ) |
4 |
|
pjhmop |
⊢ ( 𝑥 ∈ Cℋ → ( projℎ ‘ 𝑥 ) ∈ HrmOp ) |
5 |
|
pjidmco |
⊢ ( 𝑥 ∈ Cℋ → ( ( projℎ ‘ 𝑥 ) ∘ ( projℎ ‘ 𝑥 ) ) = ( projℎ ‘ 𝑥 ) ) |
6 |
4 5
|
jca |
⊢ ( 𝑥 ∈ Cℋ → ( ( projℎ ‘ 𝑥 ) ∈ HrmOp ∧ ( ( projℎ ‘ 𝑥 ) ∘ ( projℎ ‘ 𝑥 ) ) = ( projℎ ‘ 𝑥 ) ) ) |
7 |
|
eleq1 |
⊢ ( ( projℎ ‘ 𝑥 ) = 𝑇 → ( ( projℎ ‘ 𝑥 ) ∈ HrmOp ↔ 𝑇 ∈ HrmOp ) ) |
8 |
|
id |
⊢ ( ( projℎ ‘ 𝑥 ) = 𝑇 → ( projℎ ‘ 𝑥 ) = 𝑇 ) |
9 |
8 8
|
coeq12d |
⊢ ( ( projℎ ‘ 𝑥 ) = 𝑇 → ( ( projℎ ‘ 𝑥 ) ∘ ( projℎ ‘ 𝑥 ) ) = ( 𝑇 ∘ 𝑇 ) ) |
10 |
9 8
|
eqeq12d |
⊢ ( ( projℎ ‘ 𝑥 ) = 𝑇 → ( ( ( projℎ ‘ 𝑥 ) ∘ ( projℎ ‘ 𝑥 ) ) = ( projℎ ‘ 𝑥 ) ↔ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) ) |
11 |
7 10
|
anbi12d |
⊢ ( ( projℎ ‘ 𝑥 ) = 𝑇 → ( ( ( projℎ ‘ 𝑥 ) ∈ HrmOp ∧ ( ( projℎ ‘ 𝑥 ) ∘ ( projℎ ‘ 𝑥 ) ) = ( projℎ ‘ 𝑥 ) ) ↔ ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) ) ) |
12 |
6 11
|
syl5ibcom |
⊢ ( 𝑥 ∈ Cℋ → ( ( projℎ ‘ 𝑥 ) = 𝑇 → ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) ) ) |
13 |
12
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ Cℋ ( projℎ ‘ 𝑥 ) = 𝑇 → ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) ) |
14 |
3 13
|
sylbi |
⊢ ( 𝑇 ∈ ran projℎ → ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) ) |
15 |
|
hmopidmpj |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) → 𝑇 = ( projℎ ‘ ran 𝑇 ) ) |
16 |
|
hmopidmch |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) → ran 𝑇 ∈ Cℋ ) |
17 |
|
fnfvelrn |
⊢ ( ( projℎ Fn Cℋ ∧ ran 𝑇 ∈ Cℋ ) → ( projℎ ‘ ran 𝑇 ) ∈ ran projℎ ) |
18 |
1 16 17
|
sylancr |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) → ( projℎ ‘ ran 𝑇 ) ∈ ran projℎ ) |
19 |
15 18
|
eqeltrd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) → 𝑇 ∈ ran projℎ ) |
20 |
14 19
|
impbii |
⊢ ( 𝑇 ∈ ran projℎ ↔ ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) ) |