Step |
Hyp |
Ref |
Expression |
1 |
|
rneq |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ran 𝑇 = ran if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( ran 𝑇 ∈ Cℋ ↔ ran if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ Cℋ ) ) |
3 |
|
eleq1 |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( 𝑇 ∈ HrmOp ↔ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ HrmOp ) ) |
4 |
|
id |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) |
5 |
4 4
|
coeq12d |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( 𝑇 ∘ 𝑇 ) = ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) |
6 |
5 4
|
eqeq12d |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( ( 𝑇 ∘ 𝑇 ) = 𝑇 ↔ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) |
7 |
3 6
|
anbi12d |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) ↔ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ HrmOp ∧ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) ) |
8 |
|
eleq1 |
⊢ ( Iop = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( Iop ∈ HrmOp ↔ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ HrmOp ) ) |
9 |
|
id |
⊢ ( Iop = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → Iop = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) |
10 |
9 9
|
coeq12d |
⊢ ( Iop = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( Iop ∘ Iop ) = ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) |
11 |
10 9
|
eqeq12d |
⊢ ( Iop = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( ( Iop ∘ Iop ) = Iop ↔ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) |
12 |
8 11
|
anbi12d |
⊢ ( Iop = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( ( Iop ∈ HrmOp ∧ ( Iop ∘ Iop ) = Iop ) ↔ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ HrmOp ∧ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) ) |
13 |
|
idhmop |
⊢ Iop ∈ HrmOp |
14 |
|
hoif |
⊢ Iop : ℋ –1-1-onto→ ℋ |
15 |
|
f1of |
⊢ ( Iop : ℋ –1-1-onto→ ℋ → Iop : ℋ ⟶ ℋ ) |
16 |
14 15
|
ax-mp |
⊢ Iop : ℋ ⟶ ℋ |
17 |
16
|
hoid1i |
⊢ ( Iop ∘ Iop ) = Iop |
18 |
13 17
|
pm3.2i |
⊢ ( Iop ∈ HrmOp ∧ ( Iop ∘ Iop ) = Iop ) |
19 |
7 12 18
|
elimhyp |
⊢ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ HrmOp ∧ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) |
20 |
19
|
simpli |
⊢ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ HrmOp |
21 |
19
|
simpri |
⊢ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) |
22 |
20 21
|
hmopidmchi |
⊢ ran if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ Cℋ |
23 |
2 22
|
dedth |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) → ran 𝑇 ∈ Cℋ ) |