| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) |
| 2 |
|
rneq |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ran 𝑇 = ran if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( projℎ ‘ ran 𝑇 ) = ( projℎ ‘ ran if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) |
| 4 |
1 3
|
eqeq12d |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( 𝑇 = ( projℎ ‘ ran 𝑇 ) ↔ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) = ( projℎ ‘ ran if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) ) |
| 5 |
|
eleq1 |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( 𝑇 ∈ HrmOp ↔ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ HrmOp ) ) |
| 6 |
1 1
|
coeq12d |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( 𝑇 ∘ 𝑇 ) = ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) |
| 7 |
6 1
|
eqeq12d |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( ( 𝑇 ∘ 𝑇 ) = 𝑇 ↔ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) |
| 8 |
5 7
|
anbi12d |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) ↔ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ HrmOp ∧ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) ) |
| 9 |
|
eleq1 |
⊢ ( Iop = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( Iop ∈ HrmOp ↔ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ HrmOp ) ) |
| 10 |
|
id |
⊢ ( Iop = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → Iop = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) |
| 11 |
10 10
|
coeq12d |
⊢ ( Iop = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( Iop ∘ Iop ) = ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) |
| 12 |
11 10
|
eqeq12d |
⊢ ( Iop = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( ( Iop ∘ Iop ) = Iop ↔ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) |
| 13 |
9 12
|
anbi12d |
⊢ ( Iop = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) → ( ( Iop ∈ HrmOp ∧ ( Iop ∘ Iop ) = Iop ) ↔ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ HrmOp ∧ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) ) ) |
| 14 |
|
idhmop |
⊢ Iop ∈ HrmOp |
| 15 |
|
hoif |
⊢ Iop : ℋ –1-1-onto→ ℋ |
| 16 |
|
f1of |
⊢ ( Iop : ℋ –1-1-onto→ ℋ → Iop : ℋ ⟶ ℋ ) |
| 17 |
15 16
|
ax-mp |
⊢ Iop : ℋ ⟶ ℋ |
| 18 |
17
|
hoid1i |
⊢ ( Iop ∘ Iop ) = Iop |
| 19 |
14 18
|
pm3.2i |
⊢ ( Iop ∈ HrmOp ∧ ( Iop ∘ Iop ) = Iop ) |
| 20 |
8 13 19
|
elimhyp |
⊢ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ HrmOp ∧ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) |
| 21 |
20
|
simpli |
⊢ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∈ HrmOp |
| 22 |
20
|
simpri |
⊢ ( if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ∘ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) = if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) |
| 23 |
21 22
|
hmopidmpji |
⊢ if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) = ( projℎ ‘ ran if ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) , 𝑇 , Iop ) ) |
| 24 |
4 23
|
dedth |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = 𝑇 ) → 𝑇 = ( projℎ ‘ ran 𝑇 ) ) |