| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|
| 2 |
|
rneq |
|
| 3 |
2
|
fveq2d |
|
| 4 |
1 3
|
eqeq12d |
|
| 5 |
|
eleq1 |
|
| 6 |
1 1
|
coeq12d |
|
| 7 |
6 1
|
eqeq12d |
|
| 8 |
5 7
|
anbi12d |
|
| 9 |
|
eleq1 |
|
| 10 |
|
id |
|
| 11 |
10 10
|
coeq12d |
|
| 12 |
11 10
|
eqeq12d |
|
| 13 |
9 12
|
anbi12d |
|
| 14 |
|
idhmop |
|
| 15 |
|
hoif |
|
| 16 |
|
f1of |
|
| 17 |
15 16
|
ax-mp |
|
| 18 |
17
|
hoid1i |
|
| 19 |
14 18
|
pm3.2i |
|
| 20 |
8 13 19
|
elimhyp |
|
| 21 |
20
|
simpli |
|
| 22 |
20
|
simpri |
|
| 23 |
21 22
|
hmopidmpji |
|
| 24 |
4 23
|
dedth |
|