Metamath Proof Explorer


Theorem hmopidmpji

Description: An idempotent Hermitian operator is a projection operator. Theorem 26.4 of Halmos p. 44. (Halmos seems to omit the proof that H is a closed subspace, which is not trivial as hmopidmchi shows.) (Contributed by NM, 22-Apr-2006) (Revised by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hmopidmch.1 T HrmOp
hmopidmch.2 T T = T
Assertion hmopidmpji T = proj ran T

Proof

Step Hyp Ref Expression
1 hmopidmch.1 T HrmOp
2 hmopidmch.2 T T = T
3 hmoplin T HrmOp T LinOp
4 1 3 ax-mp T LinOp
5 4 lnopfi T :
6 ffn T : T Fn
7 5 6 ax-mp T Fn
8 1 2 hmopidmchi ran T C
9 8 pjfni proj ran T Fn
10 eqfnfv T Fn proj ran T Fn T = proj ran T x T x = proj ran T x
11 7 9 10 mp2an T = proj ran T x T x = proj ran T x
12 fnfvelrn T Fn x T x ran T
13 7 12 mpan x T x ran T
14 id x x
15 5 ffvelrni x T x
16 hvsubcl x T x x - T x
17 14 15 16 syl2anc x x - T x
18 simpl x y x
19 15 adantr x y T x
20 5 ffvelrni y T y
21 20 adantl x y T y
22 his2sub x T x T y x - T x ih T y = x ih T y T x ih T y
23 18 19 21 22 syl3anc x y x - T x ih T y = x ih T y T x ih T y
24 hmop T HrmOp x T y x ih T T y = T x ih T y
25 1 24 mp3an1 x T y x ih T T y = T x ih T y
26 20 25 sylan2 x y x ih T T y = T x ih T y
27 2 fveq1i T T y = T y
28 5 5 hocoi y T T y = T T y
29 27 28 syl5reqr y T T y = T y
30 29 adantl x y T T y = T y
31 30 oveq2d x y x ih T T y = x ih T y
32 26 31 eqtr3d x y T x ih T y = x ih T y
33 32 oveq2d x y x ih T y T x ih T y = x ih T y x ih T y
34 hicl x T y x ih T y
35 20 34 sylan2 x y x ih T y
36 35 subidd x y x ih T y x ih T y = 0
37 23 33 36 3eqtrd x y x - T x ih T y = 0
38 37 ralrimiva x y x - T x ih T y = 0
39 oveq2 z = T y x - T x ih z = x - T x ih T y
40 39 eqeq1d z = T y x - T x ih z = 0 x - T x ih T y = 0
41 40 ralrn T Fn z ran T x - T x ih z = 0 y x - T x ih T y = 0
42 7 41 ax-mp z ran T x - T x ih z = 0 y x - T x ih T y = 0
43 38 42 sylibr x z ran T x - T x ih z = 0
44 8 chssii ran T
45 ocel ran T x - T x ran T x - T x z ran T x - T x ih z = 0
46 44 45 ax-mp x - T x ran T x - T x z ran T x - T x ih z = 0
47 17 43 46 sylanbrc x x - T x ran T
48 8 pjcompi T x ran T x - T x ran T proj ran T T x + x - T x = T x
49 13 47 48 syl2anc x proj ran T T x + x - T x = T x
50 hvpncan3 T x x T x + x - T x = x
51 15 14 50 syl2anc x T x + x - T x = x
52 51 fveq2d x proj ran T T x + x - T x = proj ran T x
53 49 52 eqtr3d x T x = proj ran T x
54 11 53 mprgbir T = proj ran T