Metamath Proof Explorer


Theorem ocel

Description: Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion ocel HAHAxHAihx=0

Proof

Step Hyp Ref Expression
1 ocval HH=y|xHyihx=0
2 1 eleq2d HAHAy|xHyihx=0
3 oveq1 y=Ayihx=Aihx
4 3 eqeq1d y=Ayihx=0Aihx=0
5 4 ralbidv y=AxHyihx=0xHAihx=0
6 5 elrab Ay|xHyihx=0AxHAihx=0
7 2 6 bitrdi HAHAxHAihx=0