Metamath Proof Explorer


Theorem pjcompi

Description: Component of a projection. (Contributed by NM, 31-Oct-1999) (Revised by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypothesis pjidm.1 HC
Assertion pjcompi AHBHprojHA+B=A

Proof

Step Hyp Ref Expression
1 pjidm.1 HC
2 1 cheli AHA
3 1 choccli HC
4 3 cheli BHB
5 hvaddcl ABA+B
6 2 4 5 syl2an AHBHA+B
7 axpjpj HCA+BA+B=projHA+B+projHA+B
8 1 6 7 sylancr AHBHA+B=projHA+B+projHA+B
9 eqid A+B=A+B
10 axpjcl HCA+BprojHA+BH
11 1 6 10 sylancr AHBHprojHA+BH
12 axpjcl HCA+BprojHA+BH
13 3 6 12 sylancr AHBHprojHA+BH
14 simpl AHBHAH
15 simpr AHBHBH
16 1 chocunii projHA+BHprojHA+BHAHBHA+B=projHA+B+projHA+BA+B=A+BprojHA+B=AprojHA+B=B
17 11 13 14 15 16 syl22anc AHBHA+B=projHA+B+projHA+BA+B=A+BprojHA+B=AprojHA+B=B
18 9 17 mpan2i AHBHA+B=projHA+B+projHA+BprojHA+B=AprojHA+B=B
19 8 18 mpd AHBHprojHA+B=AprojHA+B=B
20 19 simpld AHBHprojHA+B=A