Metamath Proof Explorer


Theorem chocunii

Description: Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of Beran p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999) (Proof shortened by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypothesis chocuni.1 HC
Assertion chocunii AHBHCHDHR=A+BR=C+DA=CB=D

Proof

Step Hyp Ref Expression
1 chocuni.1 HC
2 1 chshii HS
3 2 a1i AHBHCHDHR=A+BR=C+DHS
4 shocsh HSHS
5 2 4 mp1i AHBHCHDHR=A+BR=C+DHS
6 ocin HSHH=0
7 2 6 mp1i AHBHCHDHR=A+BR=C+DHH=0
8 simplll AHBHCHDHR=A+BR=C+DAH
9 simpllr AHBHCHDHR=A+BR=C+DBH
10 simplrl AHBHCHDHR=A+BR=C+DCH
11 simplrr AHBHCHDHR=A+BR=C+DDH
12 eqtr2 R=A+BR=C+DA+B=C+D
13 12 adantl AHBHCHDHR=A+BR=C+DA+B=C+D
14 3 5 7 8 9 10 11 13 shuni AHBHCHDHR=A+BR=C+DA=CB=D
15 14 ex AHBHCHDHR=A+BR=C+DA=CB=D