Metamath Proof Explorer


Theorem hmopidmpji

Description: An idempotent Hermitian operator is a projection operator. Theorem 26.4 of Halmos p. 44. (Halmos seems to omit the proof that H is a closed subspace, which is not trivial as hmopidmchi shows.) (Contributed by NM, 22-Apr-2006) (Revised by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hmopidmch.1 𝑇 ∈ HrmOp
hmopidmch.2 ( 𝑇𝑇 ) = 𝑇
Assertion hmopidmpji 𝑇 = ( proj ‘ ran 𝑇 )

Proof

Step Hyp Ref Expression
1 hmopidmch.1 𝑇 ∈ HrmOp
2 hmopidmch.2 ( 𝑇𝑇 ) = 𝑇
3 hmoplin ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp )
4 1 3 ax-mp 𝑇 ∈ LinOp
5 4 lnopfi 𝑇 : ℋ ⟶ ℋ
6 ffn ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ )
7 5 6 ax-mp 𝑇 Fn ℋ
8 1 2 hmopidmchi ran 𝑇C
9 8 pjfni ( proj ‘ ran 𝑇 ) Fn ℋ
10 eqfnfv ( ( 𝑇 Fn ℋ ∧ ( proj ‘ ran 𝑇 ) Fn ℋ ) → ( 𝑇 = ( proj ‘ ran 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑇𝑥 ) = ( ( proj ‘ ran 𝑇 ) ‘ 𝑥 ) ) )
11 7 9 10 mp2an ( 𝑇 = ( proj ‘ ran 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑇𝑥 ) = ( ( proj ‘ ran 𝑇 ) ‘ 𝑥 ) )
12 fnfvelrn ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇𝑥 ) ∈ ran 𝑇 )
13 7 12 mpan ( 𝑥 ∈ ℋ → ( 𝑇𝑥 ) ∈ ran 𝑇 )
14 id ( 𝑥 ∈ ℋ → 𝑥 ∈ ℋ )
15 5 ffvelrni ( 𝑥 ∈ ℋ → ( 𝑇𝑥 ) ∈ ℋ )
16 hvsubcl ( ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑥 ) ∈ ℋ ) → ( 𝑥 ( 𝑇𝑥 ) ) ∈ ℋ )
17 14 15 16 syl2anc ( 𝑥 ∈ ℋ → ( 𝑥 ( 𝑇𝑥 ) ) ∈ ℋ )
18 simpl ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → 𝑥 ∈ ℋ )
19 15 adantr ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇𝑥 ) ∈ ℋ )
20 5 ffvelrni ( 𝑦 ∈ ℋ → ( 𝑇𝑦 ) ∈ ℋ )
21 20 adantl ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇𝑦 ) ∈ ℋ )
22 his2sub ( ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑥 ) ∈ ℋ ∧ ( 𝑇𝑦 ) ∈ ℋ ) → ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih ( 𝑇𝑦 ) ) = ( ( 𝑥 ·ih ( 𝑇𝑦 ) ) − ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑦 ) ) ) )
23 18 19 21 22 syl3anc ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih ( 𝑇𝑦 ) ) = ( ( 𝑥 ·ih ( 𝑇𝑦 ) ) − ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑦 ) ) ) )
24 hmop ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ ( 𝑇𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑇𝑦 ) ) ) = ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑦 ) ) )
25 1 24 mp3an1 ( ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑇𝑦 ) ) ) = ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑦 ) ) )
26 20 25 sylan2 ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑇𝑦 ) ) ) = ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑦 ) ) )
27 5 5 hocoi ( 𝑦 ∈ ℋ → ( ( 𝑇𝑇 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑇𝑦 ) ) )
28 2 fveq1i ( ( 𝑇𝑇 ) ‘ 𝑦 ) = ( 𝑇𝑦 )
29 27 28 eqtr3di ( 𝑦 ∈ ℋ → ( 𝑇 ‘ ( 𝑇𝑦 ) ) = ( 𝑇𝑦 ) )
30 29 adantl ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑇𝑦 ) ) = ( 𝑇𝑦 ) )
31 30 oveq2d ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑇𝑦 ) ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) )
32 26 31 eqtr3d ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) )
33 32 oveq2d ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ·ih ( 𝑇𝑦 ) ) − ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑦 ) ) ) = ( ( 𝑥 ·ih ( 𝑇𝑦 ) ) − ( 𝑥 ·ih ( 𝑇𝑦 ) ) ) )
34 hicl ( ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇𝑦 ) ) ∈ ℂ )
35 20 34 sylan2 ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇𝑦 ) ) ∈ ℂ )
36 35 subidd ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ·ih ( 𝑇𝑦 ) ) − ( 𝑥 ·ih ( 𝑇𝑦 ) ) ) = 0 )
37 23 33 36 3eqtrd ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih ( 𝑇𝑦 ) ) = 0 )
38 37 ralrimiva ( 𝑥 ∈ ℋ → ∀ 𝑦 ∈ ℋ ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih ( 𝑇𝑦 ) ) = 0 )
39 oveq2 ( 𝑧 = ( 𝑇𝑦 ) → ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih 𝑧 ) = ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih ( 𝑇𝑦 ) ) )
40 39 eqeq1d ( 𝑧 = ( 𝑇𝑦 ) → ( ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih 𝑧 ) = 0 ↔ ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih ( 𝑇𝑦 ) ) = 0 ) )
41 40 ralrn ( 𝑇 Fn ℋ → ( ∀ 𝑧 ∈ ran 𝑇 ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih 𝑧 ) = 0 ↔ ∀ 𝑦 ∈ ℋ ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih ( 𝑇𝑦 ) ) = 0 ) )
42 7 41 ax-mp ( ∀ 𝑧 ∈ ran 𝑇 ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih 𝑧 ) = 0 ↔ ∀ 𝑦 ∈ ℋ ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih ( 𝑇𝑦 ) ) = 0 )
43 38 42 sylibr ( 𝑥 ∈ ℋ → ∀ 𝑧 ∈ ran 𝑇 ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih 𝑧 ) = 0 )
44 8 chssii ran 𝑇 ⊆ ℋ
45 ocel ( ran 𝑇 ⊆ ℋ → ( ( 𝑥 ( 𝑇𝑥 ) ) ∈ ( ⊥ ‘ ran 𝑇 ) ↔ ( ( 𝑥 ( 𝑇𝑥 ) ) ∈ ℋ ∧ ∀ 𝑧 ∈ ran 𝑇 ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih 𝑧 ) = 0 ) ) )
46 44 45 ax-mp ( ( 𝑥 ( 𝑇𝑥 ) ) ∈ ( ⊥ ‘ ran 𝑇 ) ↔ ( ( 𝑥 ( 𝑇𝑥 ) ) ∈ ℋ ∧ ∀ 𝑧 ∈ ran 𝑇 ( ( 𝑥 ( 𝑇𝑥 ) ) ·ih 𝑧 ) = 0 ) )
47 17 43 46 sylanbrc ( 𝑥 ∈ ℋ → ( 𝑥 ( 𝑇𝑥 ) ) ∈ ( ⊥ ‘ ran 𝑇 ) )
48 8 pjcompi ( ( ( 𝑇𝑥 ) ∈ ran 𝑇 ∧ ( 𝑥 ( 𝑇𝑥 ) ) ∈ ( ⊥ ‘ ran 𝑇 ) ) → ( ( proj ‘ ran 𝑇 ) ‘ ( ( 𝑇𝑥 ) + ( 𝑥 ( 𝑇𝑥 ) ) ) ) = ( 𝑇𝑥 ) )
49 13 47 48 syl2anc ( 𝑥 ∈ ℋ → ( ( proj ‘ ran 𝑇 ) ‘ ( ( 𝑇𝑥 ) + ( 𝑥 ( 𝑇𝑥 ) ) ) ) = ( 𝑇𝑥 ) )
50 hvpncan3 ( ( ( 𝑇𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇𝑥 ) + ( 𝑥 ( 𝑇𝑥 ) ) ) = 𝑥 )
51 15 14 50 syl2anc ( 𝑥 ∈ ℋ → ( ( 𝑇𝑥 ) + ( 𝑥 ( 𝑇𝑥 ) ) ) = 𝑥 )
52 51 fveq2d ( 𝑥 ∈ ℋ → ( ( proj ‘ ran 𝑇 ) ‘ ( ( 𝑇𝑥 ) + ( 𝑥 ( 𝑇𝑥 ) ) ) ) = ( ( proj ‘ ran 𝑇 ) ‘ 𝑥 ) )
53 49 52 eqtr3d ( 𝑥 ∈ ℋ → ( 𝑇𝑥 ) = ( ( proj ‘ ran 𝑇 ) ‘ 𝑥 ) )
54 11 53 mprgbir 𝑇 = ( proj ‘ ran 𝑇 )