Step |
Hyp |
Ref |
Expression |
1 |
|
hmopidmch.1 |
⊢ 𝑇 ∈ HrmOp |
2 |
|
hmopidmch.2 |
⊢ ( 𝑇 ∘ 𝑇 ) = 𝑇 |
3 |
|
hmoplin |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp ) |
4 |
1 3
|
ax-mp |
⊢ 𝑇 ∈ LinOp |
5 |
4
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
6 |
|
ffn |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ ) |
7 |
5 6
|
ax-mp |
⊢ 𝑇 Fn ℋ |
8 |
1 2
|
hmopidmchi |
⊢ ran 𝑇 ∈ Cℋ |
9 |
8
|
pjfni |
⊢ ( projℎ ‘ ran 𝑇 ) Fn ℋ |
10 |
|
eqfnfv |
⊢ ( ( 𝑇 Fn ℋ ∧ ( projℎ ‘ ran 𝑇 ) Fn ℋ ) → ( 𝑇 = ( projℎ ‘ ran 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( ( projℎ ‘ ran 𝑇 ) ‘ 𝑥 ) ) ) |
11 |
7 9 10
|
mp2an |
⊢ ( 𝑇 = ( projℎ ‘ ran 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( ( projℎ ‘ ran 𝑇 ) ‘ 𝑥 ) ) |
12 |
|
fnfvelrn |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ran 𝑇 ) |
13 |
7 12
|
mpan |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ran 𝑇 ) |
14 |
|
id |
⊢ ( 𝑥 ∈ ℋ → 𝑥 ∈ ℋ ) |
15 |
5
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
16 |
|
hvsubcl |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
17 |
14 15 16
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
18 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → 𝑥 ∈ ℋ ) |
19 |
15
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
20 |
5
|
ffvelrni |
⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
21 |
20
|
adantl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
22 |
|
his2sub |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) − ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
23 |
18 19 21 22
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) − ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
24 |
|
hmop |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
25 |
1 24
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
26 |
20 25
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
27 |
5 5
|
hocoi |
⊢ ( 𝑦 ∈ ℋ → ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
28 |
2
|
fveq1i |
⊢ ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) |
29 |
27 28
|
eqtr3di |
⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑇 ‘ 𝑦 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑇 ‘ 𝑦 ) ) |
31 |
30
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑇 ‘ 𝑦 ) ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
32 |
26 31
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
33 |
32
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) − ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) − ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
34 |
|
hicl |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ∈ ℂ ) |
35 |
20 34
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ∈ ℂ ) |
36 |
35
|
subidd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) − ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) = 0 ) |
37 |
23 33 36
|
3eqtrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ) |
38 |
37
|
ralrimiva |
⊢ ( 𝑥 ∈ ℋ → ∀ 𝑦 ∈ ℋ ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ) |
39 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑇 ‘ 𝑦 ) → ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑧 ) = ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
40 |
39
|
eqeq1d |
⊢ ( 𝑧 = ( 𝑇 ‘ 𝑦 ) → ( ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑧 ) = 0 ↔ ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ) ) |
41 |
40
|
ralrn |
⊢ ( 𝑇 Fn ℋ → ( ∀ 𝑧 ∈ ran 𝑇 ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑧 ) = 0 ↔ ∀ 𝑦 ∈ ℋ ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ) ) |
42 |
7 41
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ran 𝑇 ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑧 ) = 0 ↔ ∀ 𝑦 ∈ ℋ ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ) |
43 |
38 42
|
sylibr |
⊢ ( 𝑥 ∈ ℋ → ∀ 𝑧 ∈ ran 𝑇 ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑧 ) = 0 ) |
44 |
8
|
chssii |
⊢ ran 𝑇 ⊆ ℋ |
45 |
|
ocel |
⊢ ( ran 𝑇 ⊆ ℋ → ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ( ⊥ ‘ ran 𝑇 ) ↔ ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ∧ ∀ 𝑧 ∈ ran 𝑇 ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑧 ) = 0 ) ) ) |
46 |
44 45
|
ax-mp |
⊢ ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ( ⊥ ‘ ran 𝑇 ) ↔ ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ∧ ∀ 𝑧 ∈ ran 𝑇 ( ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑧 ) = 0 ) ) |
47 |
17 43 46
|
sylanbrc |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ( ⊥ ‘ ran 𝑇 ) ) |
48 |
8
|
pjcompi |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ran 𝑇 ∧ ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ( ⊥ ‘ ran 𝑇 ) ) → ( ( projℎ ‘ ran 𝑇 ) ‘ ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) = ( 𝑇 ‘ 𝑥 ) ) |
49 |
13 47 48
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ ran 𝑇 ) ‘ ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) = ( 𝑇 ‘ 𝑥 ) ) |
50 |
|
hvpncan3 |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ) = 𝑥 ) |
51 |
15 14 50
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ) = 𝑥 ) |
52 |
51
|
fveq2d |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ ran 𝑇 ) ‘ ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) = ( ( projℎ ‘ ran 𝑇 ) ‘ 𝑥 ) ) |
53 |
49 52
|
eqtr3d |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) = ( ( projℎ ‘ ran 𝑇 ) ‘ 𝑥 ) ) |
54 |
11 53
|
mprgbir |
⊢ 𝑇 = ( projℎ ‘ ran 𝑇 ) |