Metamath Proof Explorer


Theorem hmopidmchi

Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of AkhiezerGlazman p. 64. (Contributed by NM, 21-Apr-2006) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hmopidmch.1 𝑇 ∈ HrmOp
hmopidmch.2 ( 𝑇𝑇 ) = 𝑇
Assertion hmopidmchi ran 𝑇C

Proof

Step Hyp Ref Expression
1 hmopidmch.1 𝑇 ∈ HrmOp
2 hmopidmch.2 ( 𝑇𝑇 ) = 𝑇
3 hmoplin ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp )
4 1 3 ax-mp 𝑇 ∈ LinOp
5 4 rnelshi ran 𝑇S
6 eqid ( norm ∘ − ) = ( norm ∘ − )
7 6 hilxmet ( norm ∘ − ) ∈ ( ∞Met ‘ ℋ )
8 eqid ( MetOpen ‘ ( norm ∘ − ) ) = ( MetOpen ‘ ( norm ∘ − ) )
9 8 methaus ( ( norm ∘ − ) ∈ ( ∞Met ‘ ℋ ) → ( MetOpen ‘ ( norm ∘ − ) ) ∈ Haus )
10 7 9 mp1i ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( MetOpen ‘ ( norm ∘ − ) ) ∈ Haus )
11 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
12 11 6 hhims ( norm ∘ − ) = ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
13 11 12 8 hhlm 𝑣 = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) ) ↾ ( ℋ ↑m ℕ ) )
14 resss ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) ) ↾ ( ℋ ↑m ℕ ) ) ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) )
15 13 14 eqsstri 𝑣 ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) )
16 15 ssbri ( 𝑓𝑣 𝑥𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) ) 𝑥 )
17 16 adantl ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) ) 𝑥 )
18 8 mopntopon ( ( norm ∘ − ) ∈ ( ∞Met ‘ ℋ ) → ( MetOpen ‘ ( norm ∘ − ) ) ∈ ( TopOn ‘ ℋ ) )
19 7 18 mp1i ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( MetOpen ‘ ( norm ∘ − ) ) ∈ ( TopOn ‘ ℋ ) )
20 4 lnopfi 𝑇 : ℋ ⟶ ℋ
21 20 a1i ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → 𝑇 : ℋ ⟶ ℋ )
22 21 feqmptd ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → 𝑇 = ( 𝑦 ∈ ℋ ↦ ( 𝑇𝑦 ) ) )
23 hmopbdoptHIL ( 𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp )
24 1 23 ax-mp 𝑇 ∈ BndLinOp
25 lnopcnbd ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp ) )
26 4 25 ax-mp ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp )
27 24 26 mpbir 𝑇 ∈ ContOp
28 6 8 hhcno ContOp = ( ( MetOpen ‘ ( norm ∘ − ) ) Cn ( MetOpen ‘ ( norm ∘ − ) ) )
29 27 28 eleqtri 𝑇 ∈ ( ( MetOpen ‘ ( norm ∘ − ) ) Cn ( MetOpen ‘ ( norm ∘ − ) ) )
30 22 29 eqeltrrdi ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( 𝑦 ∈ ℋ ↦ ( 𝑇𝑦 ) ) ∈ ( ( MetOpen ‘ ( norm ∘ − ) ) Cn ( MetOpen ‘ ( norm ∘ − ) ) ) )
31 19 cnmptid ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( 𝑦 ∈ ℋ ↦ 𝑦 ) ∈ ( ( MetOpen ‘ ( norm ∘ − ) ) Cn ( MetOpen ‘ ( norm ∘ − ) ) ) )
32 11 hhnv ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ NrmCVec
33 11 hhvs = ( −𝑣 ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
34 12 8 33 vmcn ( ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ NrmCVec → − ∈ ( ( ( MetOpen ‘ ( norm ∘ − ) ) ×t ( MetOpen ‘ ( norm ∘ − ) ) ) Cn ( MetOpen ‘ ( norm ∘ − ) ) ) )
35 32 34 mp1i ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → − ∈ ( ( ( MetOpen ‘ ( norm ∘ − ) ) ×t ( MetOpen ‘ ( norm ∘ − ) ) ) Cn ( MetOpen ‘ ( norm ∘ − ) ) ) )
36 19 30 31 35 cnmpt12f ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∈ ( ( MetOpen ‘ ( norm ∘ − ) ) Cn ( MetOpen ‘ ( norm ∘ − ) ) ) )
37 17 36 lmcn ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) ) ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ‘ 𝑥 ) )
38 simpl ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → 𝑓 : ℕ ⟶ ran 𝑇 )
39 5 shssii ran 𝑇 ⊆ ℋ
40 fss ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ ran 𝑇 ⊆ ℋ ) → 𝑓 : ℕ ⟶ ℋ )
41 38 39 40 sylancl ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → 𝑓 : ℕ ⟶ ℋ )
42 41 ffvelrnda ( ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) ∈ ℋ )
43 fveq2 ( 𝑦 = ( 𝑓𝑘 ) → ( 𝑇𝑦 ) = ( 𝑇 ‘ ( 𝑓𝑘 ) ) )
44 id ( 𝑦 = ( 𝑓𝑘 ) → 𝑦 = ( 𝑓𝑘 ) )
45 43 44 oveq12d ( 𝑦 = ( 𝑓𝑘 ) → ( ( 𝑇𝑦 ) − 𝑦 ) = ( ( 𝑇 ‘ ( 𝑓𝑘 ) ) − ( 𝑓𝑘 ) ) )
46 eqid ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) = ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) )
47 ovex ( ( 𝑇 ‘ ( 𝑓𝑘 ) ) − ( 𝑓𝑘 ) ) ∈ V
48 45 46 47 fvmpt ( ( 𝑓𝑘 ) ∈ ℋ → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ‘ ( 𝑓𝑘 ) ) = ( ( 𝑇 ‘ ( 𝑓𝑘 ) ) − ( 𝑓𝑘 ) ) )
49 42 48 syl ( ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ‘ ( 𝑓𝑘 ) ) = ( ( 𝑇 ‘ ( 𝑓𝑘 ) ) − ( 𝑓𝑘 ) ) )
50 ffn ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ )
51 20 50 ax-mp 𝑇 Fn ℋ
52 fveq2 ( 𝑦 = ( 𝑇𝑥 ) → ( 𝑇𝑦 ) = ( 𝑇 ‘ ( 𝑇𝑥 ) ) )
53 id ( 𝑦 = ( 𝑇𝑥 ) → 𝑦 = ( 𝑇𝑥 ) )
54 52 53 eqeq12d ( 𝑦 = ( 𝑇𝑥 ) → ( ( 𝑇𝑦 ) = 𝑦 ↔ ( 𝑇 ‘ ( 𝑇𝑥 ) ) = ( 𝑇𝑥 ) ) )
55 54 ralrn ( 𝑇 Fn ℋ → ( ∀ 𝑦 ∈ ran 𝑇 ( 𝑇𝑦 ) = 𝑦 ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ ( 𝑇𝑥 ) ) = ( 𝑇𝑥 ) ) )
56 51 55 ax-mp ( ∀ 𝑦 ∈ ran 𝑇 ( 𝑇𝑦 ) = 𝑦 ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ ( 𝑇𝑥 ) ) = ( 𝑇𝑥 ) )
57 20 20 hocoi ( 𝑥 ∈ ℋ → ( ( 𝑇𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑇𝑥 ) ) )
58 2 fveq1i ( ( 𝑇𝑇 ) ‘ 𝑥 ) = ( 𝑇𝑥 )
59 57 58 eqtr3di ( 𝑥 ∈ ℋ → ( 𝑇 ‘ ( 𝑇𝑥 ) ) = ( 𝑇𝑥 ) )
60 56 59 mprgbir 𝑦 ∈ ran 𝑇 ( 𝑇𝑦 ) = 𝑦
61 ffvelrn ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) ∈ ran 𝑇 )
62 61 adantlr ( ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) ∈ ran 𝑇 )
63 43 44 eqeq12d ( 𝑦 = ( 𝑓𝑘 ) → ( ( 𝑇𝑦 ) = 𝑦 ↔ ( 𝑇 ‘ ( 𝑓𝑘 ) ) = ( 𝑓𝑘 ) ) )
64 63 rspccv ( ∀ 𝑦 ∈ ran 𝑇 ( 𝑇𝑦 ) = 𝑦 → ( ( 𝑓𝑘 ) ∈ ran 𝑇 → ( 𝑇 ‘ ( 𝑓𝑘 ) ) = ( 𝑓𝑘 ) ) )
65 60 62 64 mpsyl ( ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑓𝑘 ) ) = ( 𝑓𝑘 ) )
66 65 42 eqeltrd ( ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑓𝑘 ) ) ∈ ℋ )
67 hvsubeq0 ( ( ( 𝑇 ‘ ( 𝑓𝑘 ) ) ∈ ℋ ∧ ( 𝑓𝑘 ) ∈ ℋ ) → ( ( ( 𝑇 ‘ ( 𝑓𝑘 ) ) − ( 𝑓𝑘 ) ) = 0 ↔ ( 𝑇 ‘ ( 𝑓𝑘 ) ) = ( 𝑓𝑘 ) ) )
68 66 42 67 syl2anc ( ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑇 ‘ ( 𝑓𝑘 ) ) − ( 𝑓𝑘 ) ) = 0 ↔ ( 𝑇 ‘ ( 𝑓𝑘 ) ) = ( 𝑓𝑘 ) ) )
69 65 68 mpbird ( ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑇 ‘ ( 𝑓𝑘 ) ) − ( 𝑓𝑘 ) ) = 0 )
70 49 69 eqtrd ( ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ‘ ( 𝑓𝑘 ) ) = 0 )
71 fvco3 ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑘 ∈ ℕ ) → ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ‘ ( 𝑓𝑘 ) ) )
72 71 adantlr ( ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ‘ ( 𝑓𝑘 ) ) )
73 ax-hv0cl 0 ∈ ℋ
74 73 elexi 0 ∈ V
75 74 fvconst2 ( 𝑘 ∈ ℕ → ( ( ℕ × { 0 } ) ‘ 𝑘 ) = 0 )
76 75 adantl ( ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑘 ) = 0 )
77 70 72 76 3eqtr4d ( ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( ℕ × { 0 } ) ‘ 𝑘 ) )
78 77 ralrimiva ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ∀ 𝑘 ∈ ℕ ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( ℕ × { 0 } ) ‘ 𝑘 ) )
79 ovex ( ( 𝑇𝑦 ) − 𝑦 ) ∈ V
80 79 46 fnmpti ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) Fn ℋ
81 fnfco ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) Fn ℋ ∧ 𝑓 : ℕ ⟶ ℋ ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) Fn ℕ )
82 80 41 81 sylancr ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) Fn ℕ )
83 74 fconst ( ℕ × { 0 } ) : ℕ ⟶ { 0 }
84 ffn ( ( ℕ × { 0 } ) : ℕ ⟶ { 0 } → ( ℕ × { 0 } ) Fn ℕ )
85 83 84 ax-mp ( ℕ × { 0 } ) Fn ℕ
86 eqfnfv ( ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) Fn ℕ ∧ ( ℕ × { 0 } ) Fn ℕ ) → ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) = ( ℕ × { 0 } ) ↔ ∀ 𝑘 ∈ ℕ ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( ℕ × { 0 } ) ‘ 𝑘 ) ) )
87 82 85 86 sylancl ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) = ( ℕ × { 0 } ) ↔ ∀ 𝑘 ∈ ℕ ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( ℕ × { 0 } ) ‘ 𝑘 ) ) )
88 78 87 mpbird ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ∘ 𝑓 ) = ( ℕ × { 0 } ) )
89 vex 𝑥 ∈ V
90 89 hlimveci ( 𝑓𝑣 𝑥𝑥 ∈ ℋ )
91 90 adantl ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → 𝑥 ∈ ℋ )
92 fveq2 ( 𝑦 = 𝑥 → ( 𝑇𝑦 ) = ( 𝑇𝑥 ) )
93 id ( 𝑦 = 𝑥𝑦 = 𝑥 )
94 92 93 oveq12d ( 𝑦 = 𝑥 → ( ( 𝑇𝑦 ) − 𝑦 ) = ( ( 𝑇𝑥 ) − 𝑥 ) )
95 ovex ( ( 𝑇𝑥 ) − 𝑥 ) ∈ V
96 94 46 95 fvmpt ( 𝑥 ∈ ℋ → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ‘ 𝑥 ) = ( ( 𝑇𝑥 ) − 𝑥 ) )
97 91 96 syl ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇𝑦 ) − 𝑦 ) ) ‘ 𝑥 ) = ( ( 𝑇𝑥 ) − 𝑥 ) )
98 37 88 97 3brtr3d ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) ) ( ( 𝑇𝑥 ) − 𝑥 ) )
99 73 a1i ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → 0 ∈ ℋ )
100 1zzd ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → 1 ∈ ℤ )
101 nnuz ℕ = ( ℤ ‘ 1 )
102 101 lmconst ( ( ( MetOpen ‘ ( norm ∘ − ) ) ∈ ( TopOn ‘ ℋ ) ∧ 0 ∈ ℋ ∧ 1 ∈ ℤ ) → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) ) 0 )
103 19 99 100 102 syl3anc ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( MetOpen ‘ ( norm ∘ − ) ) ) 0 )
104 10 98 103 lmmo ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( ( 𝑇𝑥 ) − 𝑥 ) = 0 )
105 20 ffvelrni ( 𝑥 ∈ ℋ → ( 𝑇𝑥 ) ∈ ℋ )
106 91 105 syl ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( 𝑇𝑥 ) ∈ ℋ )
107 hvsubeq0 ( ( ( 𝑇𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇𝑥 ) − 𝑥 ) = 0 ↔ ( 𝑇𝑥 ) = 𝑥 ) )
108 106 91 107 syl2anc ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( ( ( 𝑇𝑥 ) − 𝑥 ) = 0 ↔ ( 𝑇𝑥 ) = 𝑥 ) )
109 104 108 mpbid ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( 𝑇𝑥 ) = 𝑥 )
110 fnfvelrn ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇𝑥 ) ∈ ran 𝑇 )
111 51 91 110 sylancr ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → ( 𝑇𝑥 ) ∈ ran 𝑇 )
112 109 111 eqeltrrd ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → 𝑥 ∈ ran 𝑇 )
113 112 gen2 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → 𝑥 ∈ ran 𝑇 )
114 isch2 ( ran 𝑇C ↔ ( ran 𝑇S ∧ ∀ 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ ran 𝑇𝑓𝑣 𝑥 ) → 𝑥 ∈ ran 𝑇 ) ) )
115 5 113 114 mpbir2an ran 𝑇C