Step |
Hyp |
Ref |
Expression |
1 |
|
hmopidmch.1 |
⊢ 𝑇 ∈ HrmOp |
2 |
|
hmopidmch.2 |
⊢ ( 𝑇 ∘ 𝑇 ) = 𝑇 |
3 |
|
hmoplin |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp ) |
4 |
1 3
|
ax-mp |
⊢ 𝑇 ∈ LinOp |
5 |
4
|
rnelshi |
⊢ ran 𝑇 ∈ Sℋ |
6 |
|
eqid |
⊢ ( normℎ ∘ −ℎ ) = ( normℎ ∘ −ℎ ) |
7 |
6
|
hilxmet |
⊢ ( normℎ ∘ −ℎ ) ∈ ( ∞Met ‘ ℋ ) |
8 |
|
eqid |
⊢ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) = ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) |
9 |
8
|
methaus |
⊢ ( ( normℎ ∘ −ℎ ) ∈ ( ∞Met ‘ ℋ ) → ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ∈ Haus ) |
10 |
7 9
|
mp1i |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ∈ Haus ) |
11 |
|
eqid |
⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
12 |
11 6
|
hhims |
⊢ ( normℎ ∘ −ℎ ) = ( IndMet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
13 |
11 12 8
|
hhlm |
⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) |
14 |
|
resss |
⊢ ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) |
15 |
13 14
|
eqsstri |
⊢ ⇝𝑣 ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) |
16 |
15
|
ssbri |
⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) 𝑥 ) |
17 |
16
|
adantl |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) 𝑥 ) |
18 |
8
|
mopntopon |
⊢ ( ( normℎ ∘ −ℎ ) ∈ ( ∞Met ‘ ℋ ) → ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ∈ ( TopOn ‘ ℋ ) ) |
19 |
7 18
|
mp1i |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ∈ ( TopOn ‘ ℋ ) ) |
20 |
4
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
21 |
20
|
a1i |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑇 : ℋ ⟶ ℋ ) |
22 |
21
|
feqmptd |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑇 = ( 𝑦 ∈ ℋ ↦ ( 𝑇 ‘ 𝑦 ) ) ) |
23 |
|
hmopbdoptHIL |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp ) |
24 |
1 23
|
ax-mp |
⊢ 𝑇 ∈ BndLinOp |
25 |
|
lnopcnbd |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp ) ) |
26 |
4 25
|
ax-mp |
⊢ ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp ) |
27 |
24 26
|
mpbir |
⊢ 𝑇 ∈ ContOp |
28 |
6 8
|
hhcno |
⊢ ContOp = ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) |
29 |
27 28
|
eleqtri |
⊢ 𝑇 ∈ ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) |
30 |
22 29
|
eqeltrrdi |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑦 ∈ ℋ ↦ ( 𝑇 ‘ 𝑦 ) ) ∈ ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ) |
31 |
19
|
cnmptid |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑦 ∈ ℋ ↦ 𝑦 ) ∈ ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ) |
32 |
11
|
hhnv |
⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec |
33 |
11
|
hhvs |
⊢ −ℎ = ( −𝑣 ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
34 |
12 8 33
|
vmcn |
⊢ ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec → −ℎ ∈ ( ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ×t ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) Cn ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ) |
35 |
32 34
|
mp1i |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → −ℎ ∈ ( ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ×t ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) Cn ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ) |
36 |
19 30 31 35
|
cnmpt12f |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∈ ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ) |
37 |
17 36
|
lmcn |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ‘ 𝑥 ) ) |
38 |
|
simpl |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑓 : ℕ ⟶ ran 𝑇 ) |
39 |
5
|
shssii |
⊢ ran 𝑇 ⊆ ℋ |
40 |
|
fss |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ ran 𝑇 ⊆ ℋ ) → 𝑓 : ℕ ⟶ ℋ ) |
41 |
38 39 40
|
sylancl |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑓 : ℕ ⟶ ℋ ) |
42 |
41
|
ffvelrnda |
⊢ ( ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ℋ ) |
43 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
44 |
|
id |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → 𝑦 = ( 𝑓 ‘ 𝑘 ) ) |
45 |
43 44
|
oveq12d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) |
46 |
|
eqid |
⊢ ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) = ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) |
47 |
|
ovex |
⊢ ( ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ∈ V |
48 |
45 46 47
|
fvmpt |
⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ ℋ → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ‘ ( 𝑓 ‘ 𝑘 ) ) = ( ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) |
49 |
42 48
|
syl |
⊢ ( ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ‘ ( 𝑓 ‘ 𝑘 ) ) = ( ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) |
50 |
|
ffn |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ ) |
51 |
20 50
|
ax-mp |
⊢ 𝑇 Fn ℋ |
52 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑇 ‘ 𝑥 ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
53 |
|
id |
⊢ ( 𝑦 = ( 𝑇 ‘ 𝑥 ) → 𝑦 = ( 𝑇 ‘ 𝑥 ) ) |
54 |
52 53
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑇 ‘ 𝑥 ) → ( ( 𝑇 ‘ 𝑦 ) = 𝑦 ↔ ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ) ) |
55 |
54
|
ralrn |
⊢ ( 𝑇 Fn ℋ → ( ∀ 𝑦 ∈ ran 𝑇 ( 𝑇 ‘ 𝑦 ) = 𝑦 ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ) ) |
56 |
51 55
|
ax-mp |
⊢ ( ∀ 𝑦 ∈ ran 𝑇 ( 𝑇 ‘ 𝑦 ) = 𝑦 ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ) |
57 |
20 20
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
58 |
2
|
fveq1i |
⊢ ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) |
59 |
57 58
|
eqtr3di |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ) |
60 |
56 59
|
mprgbir |
⊢ ∀ 𝑦 ∈ ran 𝑇 ( 𝑇 ‘ 𝑦 ) = 𝑦 |
61 |
|
ffvelrn |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ran 𝑇 ) |
62 |
61
|
adantlr |
⊢ ( ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ran 𝑇 ) |
63 |
43 44
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑇 ‘ 𝑦 ) = 𝑦 ↔ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝑓 ‘ 𝑘 ) ) ) |
64 |
63
|
rspccv |
⊢ ( ∀ 𝑦 ∈ ran 𝑇 ( 𝑇 ‘ 𝑦 ) = 𝑦 → ( ( 𝑓 ‘ 𝑘 ) ∈ ran 𝑇 → ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝑓 ‘ 𝑘 ) ) ) |
65 |
60 62 64
|
mpsyl |
⊢ ( ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝑓 ‘ 𝑘 ) ) |
66 |
65 42
|
eqeltrd |
⊢ ( ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ ℋ ) |
67 |
|
hvsubeq0 |
⊢ ( ( ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ ℋ ∧ ( 𝑓 ‘ 𝑘 ) ∈ ℋ ) → ( ( ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) −ℎ ( 𝑓 ‘ 𝑘 ) ) = 0ℎ ↔ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝑓 ‘ 𝑘 ) ) ) |
68 |
66 42 67
|
syl2anc |
⊢ ( ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) −ℎ ( 𝑓 ‘ 𝑘 ) ) = 0ℎ ↔ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝑓 ‘ 𝑘 ) ) ) |
69 |
65 68
|
mpbird |
⊢ ( ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) −ℎ ( 𝑓 ‘ 𝑘 ) ) = 0ℎ ) |
70 |
49 69
|
eqtrd |
⊢ ( ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ‘ ( 𝑓 ‘ 𝑘 ) ) = 0ℎ ) |
71 |
|
fvco3 |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
72 |
71
|
adantlr |
⊢ ( ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
73 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
74 |
73
|
elexi |
⊢ 0ℎ ∈ V |
75 |
74
|
fvconst2 |
⊢ ( 𝑘 ∈ ℕ → ( ( ℕ × { 0ℎ } ) ‘ 𝑘 ) = 0ℎ ) |
76 |
75
|
adantl |
⊢ ( ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 0ℎ } ) ‘ 𝑘 ) = 0ℎ ) |
77 |
70 72 76
|
3eqtr4d |
⊢ ( ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( ℕ × { 0ℎ } ) ‘ 𝑘 ) ) |
78 |
77
|
ralrimiva |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ∀ 𝑘 ∈ ℕ ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( ℕ × { 0ℎ } ) ‘ 𝑘 ) ) |
79 |
|
ovex |
⊢ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ∈ V |
80 |
79 46
|
fnmpti |
⊢ ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) Fn ℋ |
81 |
|
fnfco |
⊢ ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) Fn ℋ ∧ 𝑓 : ℕ ⟶ ℋ ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) Fn ℕ ) |
82 |
80 41 81
|
sylancr |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) Fn ℕ ) |
83 |
74
|
fconst |
⊢ ( ℕ × { 0ℎ } ) : ℕ ⟶ { 0ℎ } |
84 |
|
ffn |
⊢ ( ( ℕ × { 0ℎ } ) : ℕ ⟶ { 0ℎ } → ( ℕ × { 0ℎ } ) Fn ℕ ) |
85 |
83 84
|
ax-mp |
⊢ ( ℕ × { 0ℎ } ) Fn ℕ |
86 |
|
eqfnfv |
⊢ ( ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) Fn ℕ ∧ ( ℕ × { 0ℎ } ) Fn ℕ ) → ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) = ( ℕ × { 0ℎ } ) ↔ ∀ 𝑘 ∈ ℕ ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( ℕ × { 0ℎ } ) ‘ 𝑘 ) ) ) |
87 |
82 85 86
|
sylancl |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) = ( ℕ × { 0ℎ } ) ↔ ∀ 𝑘 ∈ ℕ ( ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( ℕ × { 0ℎ } ) ‘ 𝑘 ) ) ) |
88 |
78 87
|
mpbird |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ∘ 𝑓 ) = ( ℕ × { 0ℎ } ) ) |
89 |
|
vex |
⊢ 𝑥 ∈ V |
90 |
89
|
hlimveci |
⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ ℋ ) |
91 |
90
|
adantl |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ℋ ) |
92 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑥 ) ) |
93 |
|
id |
⊢ ( 𝑦 = 𝑥 → 𝑦 = 𝑥 ) |
94 |
92 93
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) −ℎ 𝑥 ) ) |
95 |
|
ovex |
⊢ ( ( 𝑇 ‘ 𝑥 ) −ℎ 𝑥 ) ∈ V |
96 |
94 46 95
|
fvmpt |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) −ℎ 𝑥 ) ) |
97 |
91 96
|
syl |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ( 𝑦 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑦 ) −ℎ 𝑦 ) ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) −ℎ 𝑥 ) ) |
98 |
37 88 97
|
3brtr3d |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ℕ × { 0ℎ } ) ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ( ( 𝑇 ‘ 𝑥 ) −ℎ 𝑥 ) ) |
99 |
73
|
a1i |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → 0ℎ ∈ ℋ ) |
100 |
|
1zzd |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → 1 ∈ ℤ ) |
101 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
102 |
101
|
lmconst |
⊢ ( ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ∈ ( TopOn ‘ ℋ ) ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℤ ) → ( ℕ × { 0ℎ } ) ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) 0ℎ ) |
103 |
19 99 100 102
|
syl3anc |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ℕ × { 0ℎ } ) ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) 0ℎ ) |
104 |
10 98 103
|
lmmo |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ( 𝑇 ‘ 𝑥 ) −ℎ 𝑥 ) = 0ℎ ) |
105 |
20
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
106 |
91 105
|
syl |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
107 |
|
hvsubeq0 |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) −ℎ 𝑥 ) = 0ℎ ↔ ( 𝑇 ‘ 𝑥 ) = 𝑥 ) ) |
108 |
106 91 107
|
syl2anc |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ( ( 𝑇 ‘ 𝑥 ) −ℎ 𝑥 ) = 0ℎ ↔ ( 𝑇 ‘ 𝑥 ) = 𝑥 ) ) |
109 |
104 108
|
mpbid |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ‘ 𝑥 ) = 𝑥 ) |
110 |
|
fnfvelrn |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ran 𝑇 ) |
111 |
51 91 110
|
sylancr |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ‘ 𝑥 ) ∈ ran 𝑇 ) |
112 |
109 111
|
eqeltrrd |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ran 𝑇 ) |
113 |
112
|
gen2 |
⊢ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ran 𝑇 ) |
114 |
|
isch2 |
⊢ ( ran 𝑇 ∈ Cℋ ↔ ( ran 𝑇 ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ran 𝑇 ) ) ) |
115 |
5 113 114
|
mpbir2an |
⊢ ran 𝑇 ∈ Cℋ |