Metamath Proof Explorer


Theorem hmopidmchi

Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of AkhiezerGlazman p. 64. (Contributed by NM, 21-Apr-2006) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hmopidmch.1 T HrmOp
hmopidmch.2 T T = T
Assertion hmopidmchi ran T C

Proof

Step Hyp Ref Expression
1 hmopidmch.1 T HrmOp
2 hmopidmch.2 T T = T
3 hmoplin T HrmOp T LinOp
4 1 3 ax-mp T LinOp
5 4 rnelshi ran T S
6 eqid norm - = norm -
7 6 hilxmet norm - ∞Met
8 eqid MetOpen norm - = MetOpen norm -
9 8 methaus norm - ∞Met MetOpen norm - Haus
10 7 9 mp1i f : ran T f v x MetOpen norm - Haus
11 eqid + norm = + norm
12 11 6 hhims norm - = IndMet + norm
13 11 12 8 hhlm v = t MetOpen norm -
14 resss t MetOpen norm - t MetOpen norm -
15 13 14 eqsstri v t MetOpen norm -
16 15 ssbri f v x f t MetOpen norm - x
17 16 adantl f : ran T f v x f t MetOpen norm - x
18 8 mopntopon norm - ∞Met MetOpen norm - TopOn
19 7 18 mp1i f : ran T f v x MetOpen norm - TopOn
20 4 lnopfi T :
21 20 a1i f : ran T f v x T :
22 21 feqmptd f : ran T f v x T = y T y
23 hmopbdoptHIL T HrmOp T BndLinOp
24 1 23 ax-mp T BndLinOp
25 lnopcnbd T LinOp T ContOp T BndLinOp
26 4 25 ax-mp T ContOp T BndLinOp
27 24 26 mpbir T ContOp
28 6 8 hhcno ContOp = MetOpen norm - Cn MetOpen norm -
29 27 28 eleqtri T MetOpen norm - Cn MetOpen norm -
30 22 29 eqeltrrdi f : ran T f v x y T y MetOpen norm - Cn MetOpen norm -
31 19 cnmptid f : ran T f v x y y MetOpen norm - Cn MetOpen norm -
32 11 hhnv + norm NrmCVec
33 11 hhvs - = - v + norm
34 12 8 33 vmcn + norm NrmCVec - MetOpen norm - × t MetOpen norm - Cn MetOpen norm -
35 32 34 mp1i f : ran T f v x - MetOpen norm - × t MetOpen norm - Cn MetOpen norm -
36 19 30 31 35 cnmpt12f f : ran T f v x y T y - y MetOpen norm - Cn MetOpen norm -
37 17 36 lmcn f : ran T f v x y T y - y f t MetOpen norm - y T y - y x
38 simpl f : ran T f v x f : ran T
39 5 shssii ran T
40 fss f : ran T ran T f :
41 38 39 40 sylancl f : ran T f v x f :
42 41 ffvelrnda f : ran T f v x k f k
43 fveq2 y = f k T y = T f k
44 id y = f k y = f k
45 43 44 oveq12d y = f k T y - y = T f k - f k
46 eqid y T y - y = y T y - y
47 ovex T f k - f k V
48 45 46 47 fvmpt f k y T y - y f k = T f k - f k
49 42 48 syl f : ran T f v x k y T y - y f k = T f k - f k
50 ffn T : T Fn
51 20 50 ax-mp T Fn
52 fveq2 y = T x T y = T T x
53 id y = T x y = T x
54 52 53 eqeq12d y = T x T y = y T T x = T x
55 54 ralrn T Fn y ran T T y = y x T T x = T x
56 51 55 ax-mp y ran T T y = y x T T x = T x
57 2 fveq1i T T x = T x
58 20 20 hocoi x T T x = T T x
59 57 58 syl5reqr x T T x = T x
60 56 59 mprgbir y ran T T y = y
61 ffvelrn f : ran T k f k ran T
62 61 adantlr f : ran T f v x k f k ran T
63 43 44 eqeq12d y = f k T y = y T f k = f k
64 63 rspccv y ran T T y = y f k ran T T f k = f k
65 60 62 64 mpsyl f : ran T f v x k T f k = f k
66 65 42 eqeltrd f : ran T f v x k T f k
67 hvsubeq0 T f k f k T f k - f k = 0 T f k = f k
68 66 42 67 syl2anc f : ran T f v x k T f k - f k = 0 T f k = f k
69 65 68 mpbird f : ran T f v x k T f k - f k = 0
70 49 69 eqtrd f : ran T f v x k y T y - y f k = 0
71 fvco3 f : ran T k y T y - y f k = y T y - y f k
72 71 adantlr f : ran T f v x k y T y - y f k = y T y - y f k
73 ax-hv0cl 0
74 73 elexi 0 V
75 74 fvconst2 k × 0 k = 0
76 75 adantl f : ran T f v x k × 0 k = 0
77 70 72 76 3eqtr4d f : ran T f v x k y T y - y f k = × 0 k
78 77 ralrimiva f : ran T f v x k y T y - y f k = × 0 k
79 ovex T y - y V
80 79 46 fnmpti y T y - y Fn
81 fnfco y T y - y Fn f : y T y - y f Fn
82 80 41 81 sylancr f : ran T f v x y T y - y f Fn
83 74 fconst × 0 : 0
84 ffn × 0 : 0 × 0 Fn
85 83 84 ax-mp × 0 Fn
86 eqfnfv y T y - y f Fn × 0 Fn y T y - y f = × 0 k y T y - y f k = × 0 k
87 82 85 86 sylancl f : ran T f v x y T y - y f = × 0 k y T y - y f k = × 0 k
88 78 87 mpbird f : ran T f v x y T y - y f = × 0
89 vex x V
90 89 hlimveci f v x x
91 90 adantl f : ran T f v x x
92 fveq2 y = x T y = T x
93 id y = x y = x
94 92 93 oveq12d y = x T y - y = T x - x
95 ovex T x - x V
96 94 46 95 fvmpt x y T y - y x = T x - x
97 91 96 syl f : ran T f v x y T y - y x = T x - x
98 37 88 97 3brtr3d f : ran T f v x × 0 t MetOpen norm - T x - x
99 73 a1i f : ran T f v x 0
100 1zzd f : ran T f v x 1
101 nnuz = 1
102 101 lmconst MetOpen norm - TopOn 0 1 × 0 t MetOpen norm - 0
103 19 99 100 102 syl3anc f : ran T f v x × 0 t MetOpen norm - 0
104 10 98 103 lmmo f : ran T f v x T x - x = 0
105 20 ffvelrni x T x
106 91 105 syl f : ran T f v x T x
107 hvsubeq0 T x x T x - x = 0 T x = x
108 106 91 107 syl2anc f : ran T f v x T x - x = 0 T x = x
109 104 108 mpbid f : ran T f v x T x = x
110 fnfvelrn T Fn x T x ran T
111 51 91 110 sylancr f : ran T f v x T x ran T
112 109 111 eqeltrrd f : ran T f v x x ran T
113 112 gen2 f x f : ran T f v x x ran T
114 isch2 ran T C ran T S f x f : ran T f v x x ran T
115 5 113 114 mpbir2an ran T C