Step |
Hyp |
Ref |
Expression |
1 |
|
hmopidmch.1 |
|- T e. HrmOp |
2 |
|
hmopidmch.2 |
|- ( T o. T ) = T |
3 |
|
hmoplin |
|- ( T e. HrmOp -> T e. LinOp ) |
4 |
1 3
|
ax-mp |
|- T e. LinOp |
5 |
4
|
lnopfi |
|- T : ~H --> ~H |
6 |
|
ffn |
|- ( T : ~H --> ~H -> T Fn ~H ) |
7 |
5 6
|
ax-mp |
|- T Fn ~H |
8 |
1 2
|
hmopidmchi |
|- ran T e. CH |
9 |
8
|
pjfni |
|- ( projh ` ran T ) Fn ~H |
10 |
|
eqfnfv |
|- ( ( T Fn ~H /\ ( projh ` ran T ) Fn ~H ) -> ( T = ( projh ` ran T ) <-> A. x e. ~H ( T ` x ) = ( ( projh ` ran T ) ` x ) ) ) |
11 |
7 9 10
|
mp2an |
|- ( T = ( projh ` ran T ) <-> A. x e. ~H ( T ` x ) = ( ( projh ` ran T ) ` x ) ) |
12 |
|
fnfvelrn |
|- ( ( T Fn ~H /\ x e. ~H ) -> ( T ` x ) e. ran T ) |
13 |
7 12
|
mpan |
|- ( x e. ~H -> ( T ` x ) e. ran T ) |
14 |
|
id |
|- ( x e. ~H -> x e. ~H ) |
15 |
5
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
16 |
|
hvsubcl |
|- ( ( x e. ~H /\ ( T ` x ) e. ~H ) -> ( x -h ( T ` x ) ) e. ~H ) |
17 |
14 15 16
|
syl2anc |
|- ( x e. ~H -> ( x -h ( T ` x ) ) e. ~H ) |
18 |
|
simpl |
|- ( ( x e. ~H /\ y e. ~H ) -> x e. ~H ) |
19 |
15
|
adantr |
|- ( ( x e. ~H /\ y e. ~H ) -> ( T ` x ) e. ~H ) |
20 |
5
|
ffvelrni |
|- ( y e. ~H -> ( T ` y ) e. ~H ) |
21 |
20
|
adantl |
|- ( ( x e. ~H /\ y e. ~H ) -> ( T ` y ) e. ~H ) |
22 |
|
his2sub |
|- ( ( x e. ~H /\ ( T ` x ) e. ~H /\ ( T ` y ) e. ~H ) -> ( ( x -h ( T ` x ) ) .ih ( T ` y ) ) = ( ( x .ih ( T ` y ) ) - ( ( T ` x ) .ih ( T ` y ) ) ) ) |
23 |
18 19 21 22
|
syl3anc |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( x -h ( T ` x ) ) .ih ( T ` y ) ) = ( ( x .ih ( T ` y ) ) - ( ( T ` x ) .ih ( T ` y ) ) ) ) |
24 |
|
hmop |
|- ( ( T e. HrmOp /\ x e. ~H /\ ( T ` y ) e. ~H ) -> ( x .ih ( T ` ( T ` y ) ) ) = ( ( T ` x ) .ih ( T ` y ) ) ) |
25 |
1 24
|
mp3an1 |
|- ( ( x e. ~H /\ ( T ` y ) e. ~H ) -> ( x .ih ( T ` ( T ` y ) ) ) = ( ( T ` x ) .ih ( T ` y ) ) ) |
26 |
20 25
|
sylan2 |
|- ( ( x e. ~H /\ y e. ~H ) -> ( x .ih ( T ` ( T ` y ) ) ) = ( ( T ` x ) .ih ( T ` y ) ) ) |
27 |
5 5
|
hocoi |
|- ( y e. ~H -> ( ( T o. T ) ` y ) = ( T ` ( T ` y ) ) ) |
28 |
2
|
fveq1i |
|- ( ( T o. T ) ` y ) = ( T ` y ) |
29 |
27 28
|
eqtr3di |
|- ( y e. ~H -> ( T ` ( T ` y ) ) = ( T ` y ) ) |
30 |
29
|
adantl |
|- ( ( x e. ~H /\ y e. ~H ) -> ( T ` ( T ` y ) ) = ( T ` y ) ) |
31 |
30
|
oveq2d |
|- ( ( x e. ~H /\ y e. ~H ) -> ( x .ih ( T ` ( T ` y ) ) ) = ( x .ih ( T ` y ) ) ) |
32 |
26 31
|
eqtr3d |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( T ` x ) .ih ( T ` y ) ) = ( x .ih ( T ` y ) ) ) |
33 |
32
|
oveq2d |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( x .ih ( T ` y ) ) - ( ( T ` x ) .ih ( T ` y ) ) ) = ( ( x .ih ( T ` y ) ) - ( x .ih ( T ` y ) ) ) ) |
34 |
|
hicl |
|- ( ( x e. ~H /\ ( T ` y ) e. ~H ) -> ( x .ih ( T ` y ) ) e. CC ) |
35 |
20 34
|
sylan2 |
|- ( ( x e. ~H /\ y e. ~H ) -> ( x .ih ( T ` y ) ) e. CC ) |
36 |
35
|
subidd |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( x .ih ( T ` y ) ) - ( x .ih ( T ` y ) ) ) = 0 ) |
37 |
23 33 36
|
3eqtrd |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( x -h ( T ` x ) ) .ih ( T ` y ) ) = 0 ) |
38 |
37
|
ralrimiva |
|- ( x e. ~H -> A. y e. ~H ( ( x -h ( T ` x ) ) .ih ( T ` y ) ) = 0 ) |
39 |
|
oveq2 |
|- ( z = ( T ` y ) -> ( ( x -h ( T ` x ) ) .ih z ) = ( ( x -h ( T ` x ) ) .ih ( T ` y ) ) ) |
40 |
39
|
eqeq1d |
|- ( z = ( T ` y ) -> ( ( ( x -h ( T ` x ) ) .ih z ) = 0 <-> ( ( x -h ( T ` x ) ) .ih ( T ` y ) ) = 0 ) ) |
41 |
40
|
ralrn |
|- ( T Fn ~H -> ( A. z e. ran T ( ( x -h ( T ` x ) ) .ih z ) = 0 <-> A. y e. ~H ( ( x -h ( T ` x ) ) .ih ( T ` y ) ) = 0 ) ) |
42 |
7 41
|
ax-mp |
|- ( A. z e. ran T ( ( x -h ( T ` x ) ) .ih z ) = 0 <-> A. y e. ~H ( ( x -h ( T ` x ) ) .ih ( T ` y ) ) = 0 ) |
43 |
38 42
|
sylibr |
|- ( x e. ~H -> A. z e. ran T ( ( x -h ( T ` x ) ) .ih z ) = 0 ) |
44 |
8
|
chssii |
|- ran T C_ ~H |
45 |
|
ocel |
|- ( ran T C_ ~H -> ( ( x -h ( T ` x ) ) e. ( _|_ ` ran T ) <-> ( ( x -h ( T ` x ) ) e. ~H /\ A. z e. ran T ( ( x -h ( T ` x ) ) .ih z ) = 0 ) ) ) |
46 |
44 45
|
ax-mp |
|- ( ( x -h ( T ` x ) ) e. ( _|_ ` ran T ) <-> ( ( x -h ( T ` x ) ) e. ~H /\ A. z e. ran T ( ( x -h ( T ` x ) ) .ih z ) = 0 ) ) |
47 |
17 43 46
|
sylanbrc |
|- ( x e. ~H -> ( x -h ( T ` x ) ) e. ( _|_ ` ran T ) ) |
48 |
8
|
pjcompi |
|- ( ( ( T ` x ) e. ran T /\ ( x -h ( T ` x ) ) e. ( _|_ ` ran T ) ) -> ( ( projh ` ran T ) ` ( ( T ` x ) +h ( x -h ( T ` x ) ) ) ) = ( T ` x ) ) |
49 |
13 47 48
|
syl2anc |
|- ( x e. ~H -> ( ( projh ` ran T ) ` ( ( T ` x ) +h ( x -h ( T ` x ) ) ) ) = ( T ` x ) ) |
50 |
|
hvpncan3 |
|- ( ( ( T ` x ) e. ~H /\ x e. ~H ) -> ( ( T ` x ) +h ( x -h ( T ` x ) ) ) = x ) |
51 |
15 14 50
|
syl2anc |
|- ( x e. ~H -> ( ( T ` x ) +h ( x -h ( T ` x ) ) ) = x ) |
52 |
51
|
fveq2d |
|- ( x e. ~H -> ( ( projh ` ran T ) ` ( ( T ` x ) +h ( x -h ( T ` x ) ) ) ) = ( ( projh ` ran T ) ` x ) ) |
53 |
49 52
|
eqtr3d |
|- ( x e. ~H -> ( T ` x ) = ( ( projh ` ran T ) ` x ) ) |
54 |
11 53
|
mprgbir |
|- T = ( projh ` ran T ) |