Metamath Proof Explorer


Definition df-lnop

Description: Define the set of linear operators on Hilbert space. (See df-hosum for definition of operator.) (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-lnop LinOp=t|xyztxy+z=xty+tz

Detailed syntax breakdown

Step Hyp Ref Expression
0 clo classLinOp
1 vt setvart
2 chba class
3 cmap class𝑚
4 2 2 3 co class
5 vx setvarx
6 cc class
7 vy setvary
8 vz setvarz
9 1 cv setvart
10 5 cv setvarx
11 csm class
12 7 cv setvary
13 10 12 11 co classxy
14 cva class+
15 8 cv setvarz
16 13 15 14 co classxy+z
17 16 9 cfv classtxy+z
18 12 9 cfv classty
19 10 18 11 co classxty
20 15 9 cfv classtz
21 19 20 14 co classxty+tz
22 17 21 wceq wfftxy+z=xty+tz
23 22 8 2 wral wffztxy+z=xty+tz
24 23 7 2 wral wffyztxy+z=xty+tz
25 24 5 6 wral wffxyztxy+z=xty+tz
26 25 1 4 crab classt|xyztxy+z=xty+tz
27 0 26 wceq wffLinOp=t|xyztxy+z=xty+tz