Metamath Proof Explorer


Definition df-hmop

Description: Define the set of Hermitian operators on Hilbert space. Some books call these "symmetric operators" and others call them "self-adjoint operators", sometimes with slightly different technical meanings. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-hmop HrmOp=t|xyxihty=txihy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cho classHrmOp
1 vt setvart
2 chba class
3 cmap class𝑚
4 2 2 3 co class
5 vx setvarx
6 vy setvary
7 5 cv setvarx
8 csp classih
9 1 cv setvart
10 6 cv setvary
11 10 9 cfv classty
12 7 11 8 co classxihty
13 7 9 cfv classtx
14 13 10 8 co classtxihy
15 12 14 wceq wffxihty=txihy
16 15 6 2 wral wffyxihty=txihy
17 16 5 2 wral wffxyxihty=txihy
18 17 1 4 crab classt|xyxihty=txihy
19 0 18 wceq wffHrmOp=t|xyxihty=txihy