Metamath Proof Explorer


Theorem hmopidmch

Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of AkhiezerGlazman p. 64. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopidmch THrmOpTT=TranTC

Proof

Step Hyp Ref Expression
1 rneq T=ifTHrmOpTT=TTIopranT=ranifTHrmOpTT=TTIop
2 1 eleq1d T=ifTHrmOpTT=TTIopranTCranifTHrmOpTT=TTIopC
3 eleq1 T=ifTHrmOpTT=TTIopTHrmOpifTHrmOpTT=TTIopHrmOp
4 id T=ifTHrmOpTT=TTIopT=ifTHrmOpTT=TTIop
5 4 4 coeq12d T=ifTHrmOpTT=TTIopTT=ifTHrmOpTT=TTIopifTHrmOpTT=TTIop
6 5 4 eqeq12d T=ifTHrmOpTT=TTIopTT=TifTHrmOpTT=TTIopifTHrmOpTT=TTIop=ifTHrmOpTT=TTIop
7 3 6 anbi12d T=ifTHrmOpTT=TTIopTHrmOpTT=TifTHrmOpTT=TTIopHrmOpifTHrmOpTT=TTIopifTHrmOpTT=TTIop=ifTHrmOpTT=TTIop
8 eleq1 Iop=ifTHrmOpTT=TTIopIopHrmOpifTHrmOpTT=TTIopHrmOp
9 id Iop=ifTHrmOpTT=TTIopIop=ifTHrmOpTT=TTIop
10 9 9 coeq12d Iop=ifTHrmOpTT=TTIopIopIop=ifTHrmOpTT=TTIopifTHrmOpTT=TTIop
11 10 9 eqeq12d Iop=ifTHrmOpTT=TTIopIopIop=IopifTHrmOpTT=TTIopifTHrmOpTT=TTIop=ifTHrmOpTT=TTIop
12 8 11 anbi12d Iop=ifTHrmOpTT=TTIopIopHrmOpIopIop=IopifTHrmOpTT=TTIopHrmOpifTHrmOpTT=TTIopifTHrmOpTT=TTIop=ifTHrmOpTT=TTIop
13 idhmop IopHrmOp
14 hoif Iop:1-1 onto
15 f1of Iop:1-1 ontoIop:
16 14 15 ax-mp Iop:
17 16 hoid1i IopIop=Iop
18 13 17 pm3.2i IopHrmOpIopIop=Iop
19 7 12 18 elimhyp ifTHrmOpTT=TTIopHrmOpifTHrmOpTT=TTIopifTHrmOpTT=TTIop=ifTHrmOpTT=TTIop
20 19 simpli ifTHrmOpTT=TTIopHrmOp
21 19 simpri ifTHrmOpTT=TTIopifTHrmOpTT=TTIop=ifTHrmOpTT=TTIop
22 20 21 hmopidmchi ranifTHrmOpTT=TTIopC
23 2 22 dedth THrmOpTT=TranTC