Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of AkhiezerGlazman p. 64. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hmopidmch | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneq | |
|
2 | 1 | eleq1d | |
3 | eleq1 | |
|
4 | id | |
|
5 | 4 4 | coeq12d | |
6 | 5 4 | eqeq12d | |
7 | 3 6 | anbi12d | |
8 | eleq1 | |
|
9 | id | |
|
10 | 9 9 | coeq12d | |
11 | 10 9 | eqeq12d | |
12 | 8 11 | anbi12d | |
13 | idhmop | |
|
14 | hoif | |
|
15 | f1of | |
|
16 | 14 15 | ax-mp | |
17 | 16 | hoid1i | |
18 | 13 17 | pm3.2i | |
19 | 7 12 18 | elimhyp | |
20 | 19 | simpli | |
21 | 19 | simpri | |
22 | 20 21 | hmopidmchi | |
23 | 2 22 | dedth | |