Metamath Proof Explorer


Theorem hoid1i

Description: Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddrid.1 T:
Assertion hoid1i TIop=T

Proof

Step Hyp Ref Expression
1 hoaddrid.1 T:
2 df-iop Iop=proj
3 2 coeq2i TIop=Tproj
4 helch C
5 4 pjfi proj:
6 1 5 hocoi xTprojx=Tprojx
7 pjch1 xprojx=x
8 7 fveq2d xTprojx=Tx
9 6 8 eqtrd xTprojx=Tx
10 9 rgen xTprojx=Tx
11 1 5 hocofi Tproj:
12 11 1 hoeqi xTprojx=TxTproj=T
13 10 12 mpbi Tproj=T
14 3 13 eqtri TIop=T