Step |
Hyp |
Ref |
Expression |
1 |
|
pjmfn |
|- projh Fn CH |
2 |
|
fvelrnb |
|- ( projh Fn CH -> ( T e. ran projh <-> E. x e. CH ( projh ` x ) = T ) ) |
3 |
1 2
|
ax-mp |
|- ( T e. ran projh <-> E. x e. CH ( projh ` x ) = T ) |
4 |
|
pjhmop |
|- ( x e. CH -> ( projh ` x ) e. HrmOp ) |
5 |
|
pjidmco |
|- ( x e. CH -> ( ( projh ` x ) o. ( projh ` x ) ) = ( projh ` x ) ) |
6 |
4 5
|
jca |
|- ( x e. CH -> ( ( projh ` x ) e. HrmOp /\ ( ( projh ` x ) o. ( projh ` x ) ) = ( projh ` x ) ) ) |
7 |
|
eleq1 |
|- ( ( projh ` x ) = T -> ( ( projh ` x ) e. HrmOp <-> T e. HrmOp ) ) |
8 |
|
id |
|- ( ( projh ` x ) = T -> ( projh ` x ) = T ) |
9 |
8 8
|
coeq12d |
|- ( ( projh ` x ) = T -> ( ( projh ` x ) o. ( projh ` x ) ) = ( T o. T ) ) |
10 |
9 8
|
eqeq12d |
|- ( ( projh ` x ) = T -> ( ( ( projh ` x ) o. ( projh ` x ) ) = ( projh ` x ) <-> ( T o. T ) = T ) ) |
11 |
7 10
|
anbi12d |
|- ( ( projh ` x ) = T -> ( ( ( projh ` x ) e. HrmOp /\ ( ( projh ` x ) o. ( projh ` x ) ) = ( projh ` x ) ) <-> ( T e. HrmOp /\ ( T o. T ) = T ) ) ) |
12 |
6 11
|
syl5ibcom |
|- ( x e. CH -> ( ( projh ` x ) = T -> ( T e. HrmOp /\ ( T o. T ) = T ) ) ) |
13 |
12
|
rexlimiv |
|- ( E. x e. CH ( projh ` x ) = T -> ( T e. HrmOp /\ ( T o. T ) = T ) ) |
14 |
3 13
|
sylbi |
|- ( T e. ran projh -> ( T e. HrmOp /\ ( T o. T ) = T ) ) |
15 |
|
hmopidmpj |
|- ( ( T e. HrmOp /\ ( T o. T ) = T ) -> T = ( projh ` ran T ) ) |
16 |
|
hmopidmch |
|- ( ( T e. HrmOp /\ ( T o. T ) = T ) -> ran T e. CH ) |
17 |
|
fnfvelrn |
|- ( ( projh Fn CH /\ ran T e. CH ) -> ( projh ` ran T ) e. ran projh ) |
18 |
1 16 17
|
sylancr |
|- ( ( T e. HrmOp /\ ( T o. T ) = T ) -> ( projh ` ran T ) e. ran projh ) |
19 |
15 18
|
eqeltrd |
|- ( ( T e. HrmOp /\ ( T o. T ) = T ) -> T e. ran projh ) |
20 |
14 19
|
impbii |
|- ( T e. ran projh <-> ( T e. HrmOp /\ ( T o. T ) = T ) ) |