Metamath Proof Explorer


Theorem pjhmop

Description: A projection is a Hermitian operator. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjhmop
|- ( H e. CH -> ( projh ` H ) e. HrmOp )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( H = if ( H e. CH , H , 0H ) -> ( projh ` H ) = ( projh ` if ( H e. CH , H , 0H ) ) )
2 1 eleq1d
 |-  ( H = if ( H e. CH , H , 0H ) -> ( ( projh ` H ) e. HrmOp <-> ( projh ` if ( H e. CH , H , 0H ) ) e. HrmOp ) )
3 h0elch
 |-  0H e. CH
4 3 elimel
 |-  if ( H e. CH , H , 0H ) e. CH
5 4 pjhmopi
 |-  ( projh ` if ( H e. CH , H , 0H ) ) e. HrmOp
6 2 5 dedth
 |-  ( H e. CH -> ( projh ` H ) e. HrmOp )