Description: A projection is a Hermitian operator. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | pjhmop | |- ( H e. CH -> ( projh ` H ) e. HrmOp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |- ( H = if ( H e. CH , H , 0H ) -> ( projh ` H ) = ( projh ` if ( H e. CH , H , 0H ) ) ) |
|
2 | 1 | eleq1d | |- ( H = if ( H e. CH , H , 0H ) -> ( ( projh ` H ) e. HrmOp <-> ( projh ` if ( H e. CH , H , 0H ) ) e. HrmOp ) ) |
3 | h0elch | |- 0H e. CH |
|
4 | 3 | elimel | |- if ( H e. CH , H , 0H ) e. CH |
5 | 4 | pjhmopi | |- ( projh ` if ( H e. CH , H , 0H ) ) e. HrmOp |
6 | 2 5 | dedth | |- ( H e. CH -> ( projh ` H ) e. HrmOp ) |