Metamath Proof Explorer


Theorem pjhmopi

Description: A projector is a Hermitian operator. (Contributed by NM, 24-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypothesis pjhmop.1
|- H e. CH
Assertion pjhmopi
|- ( projh ` H ) e. HrmOp

Proof

Step Hyp Ref Expression
1 pjhmop.1
 |-  H e. CH
2 1 pjfi
 |-  ( projh ` H ) : ~H --> ~H
3 1 pjadji
 |-  ( ( x e. ~H /\ y e. ~H ) -> ( ( ( projh ` H ) ` x ) .ih y ) = ( x .ih ( ( projh ` H ) ` y ) ) )
4 3 eqcomd
 |-  ( ( x e. ~H /\ y e. ~H ) -> ( x .ih ( ( projh ` H ) ` y ) ) = ( ( ( projh ` H ) ` x ) .ih y ) )
5 4 rgen2
 |-  A. x e. ~H A. y e. ~H ( x .ih ( ( projh ` H ) ` y ) ) = ( ( ( projh ` H ) ` x ) .ih y )
6 elhmop
 |-  ( ( projh ` H ) e. HrmOp <-> ( ( projh ` H ) : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( ( projh ` H ) ` y ) ) = ( ( ( projh ` H ) ` x ) .ih y ) ) )
7 2 5 6 mpbir2an
 |-  ( projh ` H ) e. HrmOp