Metamath Proof Explorer


Theorem pjhmopi

Description: A projector is a Hermitian operator. (Contributed by NM, 24-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypothesis pjhmop.1 𝐻C
Assertion pjhmopi ( proj𝐻 ) ∈ HrmOp

Proof

Step Hyp Ref Expression
1 pjhmop.1 𝐻C
2 1 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
3 1 pjadji ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( proj𝐻 ) ‘ 𝑦 ) ) )
4 3 eqcomd ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( proj𝐻 ) ‘ 𝑦 ) ) = ( ( ( proj𝐻 ) ‘ 𝑥 ) ·ih 𝑦 ) )
5 4 rgen2 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( proj𝐻 ) ‘ 𝑦 ) ) = ( ( ( proj𝐻 ) ‘ 𝑥 ) ·ih 𝑦 )
6 elhmop ( ( proj𝐻 ) ∈ HrmOp ↔ ( ( proj𝐻 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( proj𝐻 ) ‘ 𝑦 ) ) = ( ( ( proj𝐻 ) ‘ 𝑥 ) ·ih 𝑦 ) ) )
7 2 5 6 mpbir2an ( proj𝐻 ) ∈ HrmOp