Step |
Hyp |
Ref |
Expression |
1 |
|
pjhmop.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
3 |
1
|
pjadji |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) |
4 |
3
|
eqcomd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
5 |
4
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ·ih 𝑦 ) |
6 |
|
elhmop |
⊢ ( ( projℎ ‘ 𝐻 ) ∈ HrmOp ↔ ( ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
7 |
2 5 6
|
mpbir2an |
⊢ ( projℎ ‘ 𝐻 ) ∈ HrmOp |