Metamath Proof Explorer
Description: A projector is a linear operator. (Contributed by NM, 24-Mar-2006)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypothesis |
pjhmop.1 |
⊢ 𝐻 ∈ Cℋ |
|
Assertion |
pjlnopi |
⊢ ( projℎ ‘ 𝐻 ) ∈ LinOp |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjhmop.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
1
|
pjhmopi |
⊢ ( projℎ ‘ 𝐻 ) ∈ HrmOp |
| 3 |
|
hmoplin |
⊢ ( ( projℎ ‘ 𝐻 ) ∈ HrmOp → ( projℎ ‘ 𝐻 ) ∈ LinOp ) |
| 4 |
2 3
|
ax-mp |
⊢ ( projℎ ‘ 𝐻 ) ∈ LinOp |