| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjhmop.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
| 3 |
|
nmopval |
⊢ ( ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ → ( normop ‘ ( projℎ ‘ 𝐻 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( normop ‘ ( projℎ ‘ 𝐻 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) |
| 5 |
|
vex |
⊢ 𝑧 ∈ V |
| 6 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ↔ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
| 7 |
6
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) ) |
| 8 |
7
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) ) |
| 9 |
5 8
|
elab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
| 10 |
|
pjnorm |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ ( normℎ ‘ 𝑦 ) ) |
| 11 |
1 10
|
mpan |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ ( normℎ ‘ 𝑦 ) ) |
| 12 |
1
|
pjhcli |
⊢ ( 𝑦 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ∈ ℋ ) |
| 13 |
|
normcl |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ∈ ℝ ) |
| 14 |
12 13
|
syl |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ∈ ℝ ) |
| 15 |
|
normcl |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
| 16 |
|
1re |
⊢ 1 ∈ ℝ |
| 17 |
|
letr |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ ( normℎ ‘ 𝑦 ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) ) |
| 18 |
16 17
|
mp3an3 |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ ( normℎ ‘ 𝑦 ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) ) |
| 19 |
14 15 18
|
syl2anc |
⊢ ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ ( normℎ ‘ 𝑦 ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) ) |
| 20 |
11 19
|
mpand |
⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ 𝑦 ) ≤ 1 → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) ) |
| 21 |
20
|
imp |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) |
| 22 |
|
breq1 |
⊢ ( 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) → ( 𝑧 ≤ 1 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) ) |
| 23 |
22
|
biimparc |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) |
| 24 |
21 23
|
sylan |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) |
| 25 |
24
|
expl |
⊢ ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) ) |
| 26 |
25
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) |
| 27 |
9 26
|
sylbi |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } → 𝑧 ≤ 1 ) |
| 28 |
27
|
rgen |
⊢ ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 |
| 29 |
1
|
cheli |
⊢ ( 𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ ( normℎ ‘ 𝑦 ) = 1 ) → 𝑦 ∈ ℋ ) |
| 31 |
29 15
|
syl |
⊢ ( 𝑦 ∈ 𝐻 → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
| 32 |
|
eqle |
⊢ ( ( ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( normℎ ‘ 𝑦 ) ≤ 1 ) |
| 33 |
31 32
|
sylan |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( normℎ ‘ 𝑦 ) ≤ 1 ) |
| 34 |
|
pjid |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑦 ∈ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) = 𝑦 ) |
| 35 |
1 34
|
mpan |
⊢ ( 𝑦 ∈ 𝐻 → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) = 𝑦 ) |
| 36 |
35
|
fveq2d |
⊢ ( 𝑦 ∈ 𝐻 → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
| 38 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( normℎ ‘ 𝑦 ) = 1 ) |
| 39 |
37 38
|
eqtr2d |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ ( normℎ ‘ 𝑦 ) = 1 ) → 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) |
| 40 |
30 33 39
|
jca32 |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( 𝑦 ∈ ℋ ∧ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) ) |
| 41 |
40
|
reximi2 |
⊢ ( ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 → ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
| 42 |
1
|
chne0i |
⊢ ( 𝐻 ≠ 0ℋ ↔ ∃ 𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ ) |
| 43 |
1
|
chshii |
⊢ 𝐻 ∈ Sℋ |
| 44 |
43
|
norm1exi |
⊢ ( ∃ 𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ ↔ ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 ) |
| 45 |
42 44
|
bitri |
⊢ ( 𝐻 ≠ 0ℋ ↔ ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 ) |
| 46 |
|
1ex |
⊢ 1 ∈ V |
| 47 |
|
eqeq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ↔ 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
| 48 |
47
|
anbi2d |
⊢ ( 𝑥 = 1 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) ) |
| 49 |
48
|
rexbidv |
⊢ ( 𝑥 = 1 → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) ) |
| 50 |
46 49
|
elab |
⊢ ( 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
| 51 |
41 45 50
|
3imtr4i |
⊢ ( 𝐻 ≠ 0ℋ → 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ) |
| 52 |
|
breq2 |
⊢ ( 𝑤 = 1 → ( 𝑧 < 𝑤 ↔ 𝑧 < 1 ) ) |
| 53 |
52
|
rspcev |
⊢ ( ( 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ∧ 𝑧 < 1 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) |
| 54 |
51 53
|
sylan |
⊢ ( ( 𝐻 ≠ 0ℋ ∧ 𝑧 < 1 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) |
| 55 |
54
|
ex |
⊢ ( 𝐻 ≠ 0ℋ → ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) |
| 56 |
55
|
ralrimivw |
⊢ ( 𝐻 ≠ 0ℋ → ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) |
| 57 |
|
nmopsetretHIL |
⊢ ( ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ⊆ ℝ ) |
| 58 |
2 57
|
ax-mp |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ⊆ ℝ |
| 59 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 60 |
58 59
|
sstri |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ⊆ ℝ* |
| 61 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 62 |
|
supxr2 |
⊢ ( ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ 1 ∈ ℝ* ) ∧ ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) ) → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 ) |
| 63 |
60 61 62
|
mpanl12 |
⊢ ( ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 ) |
| 64 |
28 56 63
|
sylancr |
⊢ ( 𝐻 ≠ 0ℋ → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 ) |
| 65 |
4 64
|
eqtrid |
⊢ ( 𝐻 ≠ 0ℋ → ( normop ‘ ( projℎ ‘ 𝐻 ) ) = 1 ) |