Step |
Hyp |
Ref |
Expression |
1 |
|
pjhmop.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
3 |
|
nmopval |
⊢ ( ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ → ( normop ‘ ( projℎ ‘ 𝐻 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
4 |
2 3
|
ax-mp |
⊢ ( normop ‘ ( projℎ ‘ 𝐻 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) |
5 |
|
vex |
⊢ 𝑧 ∈ V |
6 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ↔ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
7 |
6
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) ) |
9 |
5 8
|
elab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
10 |
|
pjnorm |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ ( normℎ ‘ 𝑦 ) ) |
11 |
1 10
|
mpan |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ ( normℎ ‘ 𝑦 ) ) |
12 |
1
|
pjhcli |
⊢ ( 𝑦 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ∈ ℋ ) |
13 |
|
normcl |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ∈ ℝ ) |
14 |
12 13
|
syl |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ∈ ℝ ) |
15 |
|
normcl |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
16 |
|
1re |
⊢ 1 ∈ ℝ |
17 |
|
letr |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ ( normℎ ‘ 𝑦 ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) ) |
18 |
16 17
|
mp3an3 |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ ( normℎ ‘ 𝑦 ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) ) |
19 |
14 15 18
|
syl2anc |
⊢ ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ ( normℎ ‘ 𝑦 ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) ) |
20 |
11 19
|
mpand |
⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ 𝑦 ) ≤ 1 → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) ) |
21 |
20
|
imp |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) |
22 |
|
breq1 |
⊢ ( 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) → ( 𝑧 ≤ 1 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) ) |
23 |
22
|
biimparc |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) |
24 |
21 23
|
sylan |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) |
25 |
24
|
expl |
⊢ ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) ) |
26 |
25
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) |
27 |
9 26
|
sylbi |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } → 𝑧 ≤ 1 ) |
28 |
27
|
rgen |
⊢ ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 |
29 |
1
|
cheli |
⊢ ( 𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ ) |
30 |
29
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ ( normℎ ‘ 𝑦 ) = 1 ) → 𝑦 ∈ ℋ ) |
31 |
29 15
|
syl |
⊢ ( 𝑦 ∈ 𝐻 → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
32 |
|
eqle |
⊢ ( ( ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( normℎ ‘ 𝑦 ) ≤ 1 ) |
33 |
31 32
|
sylan |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( normℎ ‘ 𝑦 ) ≤ 1 ) |
34 |
|
pjid |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑦 ∈ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) = 𝑦 ) |
35 |
1 34
|
mpan |
⊢ ( 𝑦 ∈ 𝐻 → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) = 𝑦 ) |
36 |
35
|
fveq2d |
⊢ ( 𝑦 ∈ 𝐻 → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
38 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( normℎ ‘ 𝑦 ) = 1 ) |
39 |
37 38
|
eqtr2d |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ ( normℎ ‘ 𝑦 ) = 1 ) → 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) |
40 |
30 33 39
|
jca32 |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( 𝑦 ∈ ℋ ∧ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) ) |
41 |
40
|
reximi2 |
⊢ ( ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 → ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
42 |
1
|
chne0i |
⊢ ( 𝐻 ≠ 0ℋ ↔ ∃ 𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ ) |
43 |
1
|
chshii |
⊢ 𝐻 ∈ Sℋ |
44 |
43
|
norm1exi |
⊢ ( ∃ 𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ ↔ ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 ) |
45 |
42 44
|
bitri |
⊢ ( 𝐻 ≠ 0ℋ ↔ ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 ) |
46 |
|
1ex |
⊢ 1 ∈ V |
47 |
|
eqeq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ↔ 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
48 |
47
|
anbi2d |
⊢ ( 𝑥 = 1 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) ) |
49 |
48
|
rexbidv |
⊢ ( 𝑥 = 1 → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) ) |
50 |
46 49
|
elab |
⊢ ( 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
51 |
41 45 50
|
3imtr4i |
⊢ ( 𝐻 ≠ 0ℋ → 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ) |
52 |
|
breq2 |
⊢ ( 𝑤 = 1 → ( 𝑧 < 𝑤 ↔ 𝑧 < 1 ) ) |
53 |
52
|
rspcev |
⊢ ( ( 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ∧ 𝑧 < 1 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) |
54 |
51 53
|
sylan |
⊢ ( ( 𝐻 ≠ 0ℋ ∧ 𝑧 < 1 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) |
55 |
54
|
ex |
⊢ ( 𝐻 ≠ 0ℋ → ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) |
56 |
55
|
ralrimivw |
⊢ ( 𝐻 ≠ 0ℋ → ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) |
57 |
|
nmopsetretHIL |
⊢ ( ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ⊆ ℝ ) |
58 |
2 57
|
ax-mp |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ⊆ ℝ |
59 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
60 |
58 59
|
sstri |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ⊆ ℝ* |
61 |
|
1xr |
⊢ 1 ∈ ℝ* |
62 |
|
supxr2 |
⊢ ( ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ 1 ∈ ℝ* ) ∧ ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) ) → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 ) |
63 |
60 61 62
|
mpanl12 |
⊢ ( ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 ) |
64 |
28 56 63
|
sylancr |
⊢ ( 𝐻 ≠ 0ℋ → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 ) |
65 |
4 64
|
syl5eq |
⊢ ( 𝐻 ≠ 0ℋ → ( normop ‘ ( projℎ ‘ 𝐻 ) ) = 1 ) |