Metamath Proof Explorer


Theorem pjnmopi

Description: The operator norm of a projector on a nonzero closed subspace is one. Part of Theorem 26.1 of Halmos p. 43. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypothesis pjhmop.1 𝐻C
Assertion pjnmopi ( 𝐻 ≠ 0 → ( normop ‘ ( proj𝐻 ) ) = 1 )

Proof

Step Hyp Ref Expression
1 pjhmop.1 𝐻C
2 1 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
3 nmopval ( ( proj𝐻 ) : ℋ ⟶ ℋ → ( normop ‘ ( proj𝐻 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) )
4 2 3 ax-mp ( normop ‘ ( proj𝐻 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < )
5 vex 𝑧 ∈ V
6 eqeq1 ( 𝑥 = 𝑧 → ( 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ↔ 𝑧 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) )
7 6 anbi2d ( 𝑥 = 𝑧 → ( ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) ↔ ( ( norm𝑦 ) ≤ 1 ∧ 𝑧 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) ) )
8 7 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑧 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) ) )
9 5 8 elab ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑧 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) )
10 pjnorm ( ( 𝐻C𝑦 ∈ ℋ ) → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ≤ ( norm𝑦 ) )
11 1 10 mpan ( 𝑦 ∈ ℋ → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ≤ ( norm𝑦 ) )
12 1 pjhcli ( 𝑦 ∈ ℋ → ( ( proj𝐻 ) ‘ 𝑦 ) ∈ ℋ )
13 normcl ( ( ( proj𝐻 ) ‘ 𝑦 ) ∈ ℋ → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ∈ ℝ )
14 12 13 syl ( 𝑦 ∈ ℋ → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ∈ ℝ )
15 normcl ( 𝑦 ∈ ℋ → ( norm𝑦 ) ∈ ℝ )
16 1re 1 ∈ ℝ
17 letr ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ∈ ℝ ∧ ( norm𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ≤ ( norm𝑦 ) ∧ ( norm𝑦 ) ≤ 1 ) → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) )
18 16 17 mp3an3 ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ∈ ℝ ∧ ( norm𝑦 ) ∈ ℝ ) → ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ≤ ( norm𝑦 ) ∧ ( norm𝑦 ) ≤ 1 ) → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) )
19 14 15 18 syl2anc ( 𝑦 ∈ ℋ → ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ≤ ( norm𝑦 ) ∧ ( norm𝑦 ) ≤ 1 ) → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) )
20 11 19 mpand ( 𝑦 ∈ ℋ → ( ( norm𝑦 ) ≤ 1 → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) )
21 20 imp ( ( 𝑦 ∈ ℋ ∧ ( norm𝑦 ) ≤ 1 ) → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ≤ 1 )
22 breq1 ( 𝑧 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) → ( 𝑧 ≤ 1 ↔ ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ≤ 1 ) )
23 22 biimparc ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ≤ 1 ∧ 𝑧 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 )
24 21 23 sylan ( ( ( 𝑦 ∈ ℋ ∧ ( norm𝑦 ) ≤ 1 ) ∧ 𝑧 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 )
25 24 expl ( 𝑦 ∈ ℋ → ( ( ( norm𝑦 ) ≤ 1 ∧ 𝑧 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) )
26 25 rexlimiv ( ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑧 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 )
27 9 26 sylbi ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } → 𝑧 ≤ 1 )
28 27 rgen 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 ≤ 1
29 1 cheli ( 𝑦𝐻𝑦 ∈ ℋ )
30 29 adantr ( ( 𝑦𝐻 ∧ ( norm𝑦 ) = 1 ) → 𝑦 ∈ ℋ )
31 29 15 syl ( 𝑦𝐻 → ( norm𝑦 ) ∈ ℝ )
32 eqle ( ( ( norm𝑦 ) ∈ ℝ ∧ ( norm𝑦 ) = 1 ) → ( norm𝑦 ) ≤ 1 )
33 31 32 sylan ( ( 𝑦𝐻 ∧ ( norm𝑦 ) = 1 ) → ( norm𝑦 ) ≤ 1 )
34 pjid ( ( 𝐻C𝑦𝐻 ) → ( ( proj𝐻 ) ‘ 𝑦 ) = 𝑦 )
35 1 34 mpan ( 𝑦𝐻 → ( ( proj𝐻 ) ‘ 𝑦 ) = 𝑦 )
36 35 fveq2d ( 𝑦𝐻 → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) = ( norm𝑦 ) )
37 36 adantr ( ( 𝑦𝐻 ∧ ( norm𝑦 ) = 1 ) → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) = ( norm𝑦 ) )
38 simpr ( ( 𝑦𝐻 ∧ ( norm𝑦 ) = 1 ) → ( norm𝑦 ) = 1 )
39 37 38 eqtr2d ( ( 𝑦𝐻 ∧ ( norm𝑦 ) = 1 ) → 1 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) )
40 30 33 39 jca32 ( ( 𝑦𝐻 ∧ ( norm𝑦 ) = 1 ) → ( 𝑦 ∈ ℋ ∧ ( ( norm𝑦 ) ≤ 1 ∧ 1 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) ) )
41 40 reximi2 ( ∃ 𝑦𝐻 ( norm𝑦 ) = 1 → ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 1 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) )
42 1 chne0i ( 𝐻 ≠ 0 ↔ ∃ 𝑦𝐻 𝑦 ≠ 0 )
43 1 chshii 𝐻S
44 43 norm1exi ( ∃ 𝑦𝐻 𝑦 ≠ 0 ↔ ∃ 𝑦𝐻 ( norm𝑦 ) = 1 )
45 42 44 bitri ( 𝐻 ≠ 0 ↔ ∃ 𝑦𝐻 ( norm𝑦 ) = 1 )
46 1ex 1 ∈ V
47 eqeq1 ( 𝑥 = 1 → ( 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ↔ 1 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) )
48 47 anbi2d ( 𝑥 = 1 → ( ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) ↔ ( ( norm𝑦 ) ≤ 1 ∧ 1 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) ) )
49 48 rexbidv ( 𝑥 = 1 → ( ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 1 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) ) )
50 46 49 elab ( 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 1 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) )
51 41 45 50 3imtr4i ( 𝐻 ≠ 0 → 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } )
52 breq2 ( 𝑤 = 1 → ( 𝑧 < 𝑤𝑧 < 1 ) )
53 52 rspcev ( ( 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } ∧ 𝑧 < 1 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 )
54 51 53 sylan ( ( 𝐻 ≠ 0𝑧 < 1 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 )
55 54 ex ( 𝐻 ≠ 0 → ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) )
56 55 ralrimivw ( 𝐻 ≠ 0 → ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) )
57 nmopsetretHIL ( ( proj𝐻 ) : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } ⊆ ℝ )
58 2 57 ax-mp { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } ⊆ ℝ
59 ressxr ℝ ⊆ ℝ*
60 58 59 sstri { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } ⊆ ℝ*
61 1xr 1 ∈ ℝ*
62 supxr2 ( ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ 1 ∈ ℝ* ) ∧ ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) ) → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 )
63 60 61 62 mpanl12 ( ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 )
64 28 56 63 sylancr ( 𝐻 ≠ 0 → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( ( proj𝐻 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 )
65 4 64 syl5eq ( 𝐻 ≠ 0 → ( normop ‘ ( proj𝐻 ) ) = 1 )