| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjhmop.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
1
|
pjlnopi |
⊢ ( projℎ ‘ 𝐻 ) ∈ LinOp |
| 3 |
|
2fveq3 |
⊢ ( 𝐻 = 0ℋ → ( normop ‘ ( projℎ ‘ 𝐻 ) ) = ( normop ‘ ( projℎ ‘ 0ℋ ) ) ) |
| 4 |
3
|
eleq1d |
⊢ ( 𝐻 = 0ℋ → ( ( normop ‘ ( projℎ ‘ 𝐻 ) ) ∈ ℝ ↔ ( normop ‘ ( projℎ ‘ 0ℋ ) ) ∈ ℝ ) ) |
| 5 |
1
|
pjnmopi |
⊢ ( 𝐻 ≠ 0ℋ → ( normop ‘ ( projℎ ‘ 𝐻 ) ) = 1 ) |
| 6 |
|
1re |
⊢ 1 ∈ ℝ |
| 7 |
5 6
|
eqeltrdi |
⊢ ( 𝐻 ≠ 0ℋ → ( normop ‘ ( projℎ ‘ 𝐻 ) ) ∈ ℝ ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐻 ≠ 0ℋ ) → ( normop ‘ ( projℎ ‘ 𝐻 ) ) ∈ ℝ ) |
| 9 |
|
df-h0op |
⊢ 0hop = ( projℎ ‘ 0ℋ ) |
| 10 |
9
|
fveq2i |
⊢ ( normop ‘ 0hop ) = ( normop ‘ ( projℎ ‘ 0ℋ ) ) |
| 11 |
|
nmop0 |
⊢ ( normop ‘ 0hop ) = 0 |
| 12 |
10 11
|
eqtr3i |
⊢ ( normop ‘ ( projℎ ‘ 0ℋ ) ) = 0 |
| 13 |
|
0re |
⊢ 0 ∈ ℝ |
| 14 |
12 13
|
eqeltri |
⊢ ( normop ‘ ( projℎ ‘ 0ℋ ) ) ∈ ℝ |
| 15 |
14
|
a1i |
⊢ ( 𝐻 ∈ Cℋ → ( normop ‘ ( projℎ ‘ 0ℋ ) ) ∈ ℝ ) |
| 16 |
4 8 15
|
pm2.61ne |
⊢ ( 𝐻 ∈ Cℋ → ( normop ‘ ( projℎ ‘ 𝐻 ) ) ∈ ℝ ) |
| 17 |
1 16
|
ax-mp |
⊢ ( normop ‘ ( projℎ ‘ 𝐻 ) ) ∈ ℝ |
| 18 |
|
elbdop2 |
⊢ ( ( projℎ ‘ 𝐻 ) ∈ BndLinOp ↔ ( ( projℎ ‘ 𝐻 ) ∈ LinOp ∧ ( normop ‘ ( projℎ ‘ 𝐻 ) ) ∈ ℝ ) ) |
| 19 |
2 17 18
|
mpbir2an |
⊢ ( projℎ ‘ 𝐻 ) ∈ BndLinOp |