Metamath Proof Explorer


Theorem pjbdlni

Description: A projector is a bounded linear operator. (Contributed by NM, 3-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypothesis pjhmop.1 𝐻C
Assertion pjbdlni ( proj𝐻 ) ∈ BndLinOp

Proof

Step Hyp Ref Expression
1 pjhmop.1 𝐻C
2 1 pjlnopi ( proj𝐻 ) ∈ LinOp
3 2fveq3 ( 𝐻 = 0 → ( normop ‘ ( proj𝐻 ) ) = ( normop ‘ ( proj ‘ 0 ) ) )
4 3 eleq1d ( 𝐻 = 0 → ( ( normop ‘ ( proj𝐻 ) ) ∈ ℝ ↔ ( normop ‘ ( proj ‘ 0 ) ) ∈ ℝ ) )
5 1 pjnmopi ( 𝐻 ≠ 0 → ( normop ‘ ( proj𝐻 ) ) = 1 )
6 1re 1 ∈ ℝ
7 5 6 eqeltrdi ( 𝐻 ≠ 0 → ( normop ‘ ( proj𝐻 ) ) ∈ ℝ )
8 7 adantl ( ( 𝐻C𝐻 ≠ 0 ) → ( normop ‘ ( proj𝐻 ) ) ∈ ℝ )
9 df-h0op 0hop = ( proj ‘ 0 )
10 9 fveq2i ( normop ‘ 0hop ) = ( normop ‘ ( proj ‘ 0 ) )
11 nmop0 ( normop ‘ 0hop ) = 0
12 10 11 eqtr3i ( normop ‘ ( proj ‘ 0 ) ) = 0
13 0re 0 ∈ ℝ
14 12 13 eqeltri ( normop ‘ ( proj ‘ 0 ) ) ∈ ℝ
15 14 a1i ( 𝐻C → ( normop ‘ ( proj ‘ 0 ) ) ∈ ℝ )
16 4 8 15 pm2.61ne ( 𝐻C → ( normop ‘ ( proj𝐻 ) ) ∈ ℝ )
17 1 16 ax-mp ( normop ‘ ( proj𝐻 ) ) ∈ ℝ
18 elbdop2 ( ( proj𝐻 ) ∈ BndLinOp ↔ ( ( proj𝐻 ) ∈ LinOp ∧ ( normop ‘ ( proj𝐻 ) ) ∈ ℝ ) )
19 2 17 18 mpbir2an ( proj𝐻 ) ∈ BndLinOp