Step |
Hyp |
Ref |
Expression |
1 |
|
pjhmop.1 |
|- H e. CH |
2 |
1
|
pjlnopi |
|- ( projh ` H ) e. LinOp |
3 |
|
2fveq3 |
|- ( H = 0H -> ( normop ` ( projh ` H ) ) = ( normop ` ( projh ` 0H ) ) ) |
4 |
3
|
eleq1d |
|- ( H = 0H -> ( ( normop ` ( projh ` H ) ) e. RR <-> ( normop ` ( projh ` 0H ) ) e. RR ) ) |
5 |
1
|
pjnmopi |
|- ( H =/= 0H -> ( normop ` ( projh ` H ) ) = 1 ) |
6 |
|
1re |
|- 1 e. RR |
7 |
5 6
|
eqeltrdi |
|- ( H =/= 0H -> ( normop ` ( projh ` H ) ) e. RR ) |
8 |
7
|
adantl |
|- ( ( H e. CH /\ H =/= 0H ) -> ( normop ` ( projh ` H ) ) e. RR ) |
9 |
|
df-h0op |
|- 0hop = ( projh ` 0H ) |
10 |
9
|
fveq2i |
|- ( normop ` 0hop ) = ( normop ` ( projh ` 0H ) ) |
11 |
|
nmop0 |
|- ( normop ` 0hop ) = 0 |
12 |
10 11
|
eqtr3i |
|- ( normop ` ( projh ` 0H ) ) = 0 |
13 |
|
0re |
|- 0 e. RR |
14 |
12 13
|
eqeltri |
|- ( normop ` ( projh ` 0H ) ) e. RR |
15 |
14
|
a1i |
|- ( H e. CH -> ( normop ` ( projh ` 0H ) ) e. RR ) |
16 |
4 8 15
|
pm2.61ne |
|- ( H e. CH -> ( normop ` ( projh ` H ) ) e. RR ) |
17 |
1 16
|
ax-mp |
|- ( normop ` ( projh ` H ) ) e. RR |
18 |
|
elbdop2 |
|- ( ( projh ` H ) e. BndLinOp <-> ( ( projh ` H ) e. LinOp /\ ( normop ` ( projh ` H ) ) e. RR ) ) |
19 |
2 17 18
|
mpbir2an |
|- ( projh ` H ) e. BndLinOp |