Metamath Proof Explorer


Theorem nmop0

Description: The norm of the zero operator is zero. (Contributed by NM, 8-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmop0 ( normop ‘ 0hop ) = 0

Proof

Step Hyp Ref Expression
1 ho0f 0hop : ℋ ⟶ ℋ
2 nmopval ( 0hop : ℋ ⟶ ℋ → ( normop ‘ 0hop ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 0hop𝑦 ) ) ) } , ℝ* , < ) )
3 1 2 ax-mp ( normop ‘ 0hop ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 0hop𝑦 ) ) ) } , ℝ* , < )
4 ho0val ( 𝑦 ∈ ℋ → ( 0hop𝑦 ) = 0 )
5 4 fveq2d ( 𝑦 ∈ ℋ → ( norm ‘ ( 0hop𝑦 ) ) = ( norm ‘ 0 ) )
6 norm0 ( norm ‘ 0 ) = 0
7 5 6 eqtrdi ( 𝑦 ∈ ℋ → ( norm ‘ ( 0hop𝑦 ) ) = 0 )
8 7 eqeq2d ( 𝑦 ∈ ℋ → ( 𝑥 = ( norm ‘ ( 0hop𝑦 ) ) ↔ 𝑥 = 0 ) )
9 8 anbi2d ( 𝑦 ∈ ℋ → ( ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 0hop𝑦 ) ) ) ↔ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ) )
10 9 rexbiia ( ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 0hop𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) )
11 ax-hv0cl 0 ∈ ℋ
12 0le1 0 ≤ 1
13 fveq2 ( 𝑦 = 0 → ( norm𝑦 ) = ( norm ‘ 0 ) )
14 13 6 eqtrdi ( 𝑦 = 0 → ( norm𝑦 ) = 0 )
15 14 breq1d ( 𝑦 = 0 → ( ( norm𝑦 ) ≤ 1 ↔ 0 ≤ 1 ) )
16 15 rspcev ( ( 0 ∈ ℋ ∧ 0 ≤ 1 ) → ∃ 𝑦 ∈ ℋ ( norm𝑦 ) ≤ 1 )
17 11 12 16 mp2an 𝑦 ∈ ℋ ( norm𝑦 ) ≤ 1
18 r19.41v ( ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ↔ ( ∃ 𝑦 ∈ ℋ ( norm𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) )
19 17 18 mpbiran ( ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ↔ 𝑥 = 0 )
20 10 19 bitri ( ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 0hop𝑦 ) ) ) ↔ 𝑥 = 0 )
21 20 abbii { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 0hop𝑦 ) ) ) } = { 𝑥𝑥 = 0 }
22 df-sn { 0 } = { 𝑥𝑥 = 0 }
23 21 22 eqtr4i { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 0hop𝑦 ) ) ) } = { 0 }
24 23 supeq1i sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 0hop𝑦 ) ) ) } , ℝ* , < ) = sup ( { 0 } , ℝ* , < )
25 xrltso < Or ℝ*
26 0xr 0 ∈ ℝ*
27 supsn ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 )
28 25 26 27 mp2an sup ( { 0 } , ℝ* , < ) = 0
29 3 24 28 3eqtri ( normop ‘ 0hop ) = 0