Metamath Proof Explorer


Theorem nmop0

Description: The norm of the zero operator is zero. (Contributed by NM, 8-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmop0 normop0hop=0

Proof

Step Hyp Ref Expression
1 ho0f 0hop:
2 nmopval 0hop:normop0hop=supx|ynormy1x=norm0hopy*<
3 1 2 ax-mp normop0hop=supx|ynormy1x=norm0hopy*<
4 ho0val y0hopy=0
5 4 fveq2d ynorm0hopy=norm0
6 norm0 norm0=0
7 5 6 eqtrdi ynorm0hopy=0
8 7 eqeq2d yx=norm0hopyx=0
9 8 anbi2d ynormy1x=norm0hopynormy1x=0
10 9 rexbiia ynormy1x=norm0hopyynormy1x=0
11 ax-hv0cl 0
12 0le1 01
13 fveq2 y=0normy=norm0
14 13 6 eqtrdi y=0normy=0
15 14 breq1d y=0normy101
16 15 rspcev 001ynormy1
17 11 12 16 mp2an ynormy1
18 r19.41v ynormy1x=0ynormy1x=0
19 17 18 mpbiran ynormy1x=0x=0
20 10 19 bitri ynormy1x=norm0hopyx=0
21 20 abbii x|ynormy1x=norm0hopy=x|x=0
22 df-sn 0=x|x=0
23 21 22 eqtr4i x|ynormy1x=norm0hopy=0
24 23 supeq1i supx|ynormy1x=norm0hopy*<=sup0*<
25 xrltso <Or*
26 0xr 0*
27 supsn <Or*0*sup0*<=0
28 25 26 27 mp2an sup0*<=0
29 3 24 28 3eqtri normop0hop=0