Metamath Proof Explorer


Theorem pjhmop

Description: A projection is a Hermitian operator. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjhmop ( 𝐻C → ( proj𝐻 ) ∈ HrmOp )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝐻 = if ( 𝐻C , 𝐻 , 0 ) → ( proj𝐻 ) = ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) )
2 1 eleq1d ( 𝐻 = if ( 𝐻C , 𝐻 , 0 ) → ( ( proj𝐻 ) ∈ HrmOp ↔ ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ∈ HrmOp ) )
3 h0elch 0C
4 3 elimel if ( 𝐻C , 𝐻 , 0 ) ∈ C
5 4 pjhmopi ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ∈ HrmOp
6 2 5 dedth ( 𝐻C → ( proj𝐻 ) ∈ HrmOp )