Description: A projection is a Hermitian operator. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjhmop | ⊢ ( 𝐻 ∈ Cℋ → ( projℎ ‘ 𝐻 ) ∈ HrmOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( projℎ ‘ 𝐻 ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( projℎ ‘ 𝐻 ) ∈ HrmOp ↔ ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ∈ HrmOp ) ) |
| 3 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 4 | 3 | elimel | ⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ∈ Cℋ |
| 5 | 4 | pjhmopi | ⊢ ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ∈ HrmOp |
| 6 | 2 5 | dedth | ⊢ ( 𝐻 ∈ Cℋ → ( projℎ ‘ 𝐻 ) ∈ HrmOp ) |