Metamath Proof Explorer


Theorem supxr2

Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006)

Ref Expression
Assertion supxr2 ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥𝐴 𝑥𝐵 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 ssel2 ( ( 𝐴 ⊆ ℝ*𝑥𝐴 ) → 𝑥 ∈ ℝ* )
2 xrlenlt ( ( 𝑥 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝑥𝐵 ↔ ¬ 𝐵 < 𝑥 ) )
3 1 2 sylan ( ( ( 𝐴 ⊆ ℝ*𝑥𝐴 ) ∧ 𝐵 ∈ ℝ* ) → ( 𝑥𝐵 ↔ ¬ 𝐵 < 𝑥 ) )
4 3 an32s ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ 𝑥𝐴 ) → ( 𝑥𝐵 ↔ ¬ 𝐵 < 𝑥 ) )
5 4 ralbidva ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → ( ∀ 𝑥𝐴 𝑥𝐵 ↔ ∀ 𝑥𝐴 ¬ 𝐵 < 𝑥 ) )
6 5 anbi1d ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → ( ( ∀ 𝑥𝐴 𝑥𝐵 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) ↔ ( ∀ 𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) ) )
7 6 biimpa ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥𝐴 𝑥𝐵 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) ) → ( ∀ 𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) )
8 supxr ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 )
9 7 8 syldan ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥𝐴 𝑥𝐵 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 )