Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrcl | ⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso | ⊢ < Or ℝ* | |
2 | 1 | a1i | ⊢ ( 𝐴 ⊆ ℝ* → < Or ℝ* ) |
3 | xrsupss | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) | |
4 | 2 3 | supcl | ⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |