Metamath Proof Explorer


Theorem supxrcl

Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005)

Ref Expression
Assertion supxrcl A*supA*<*

Proof

Step Hyp Ref Expression
1 xrltso <Or*
2 1 a1i A*<Or*
3 xrsupss A*x*yA¬x<yy*y<xzAy<z
4 2 3 supcl A*supA*<*