Description: The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss | |
|
2 | 1 | biimpi | |
3 | 2 | 3adant3 | |
4 | supxrcl | |
|
5 | 4 | 3ad2ant2 | |
6 | elun | |
|
7 | xrltso | |
|
8 | 7 | a1i | |
9 | xrsupss | |
|
10 | 8 9 | supub | |
11 | 10 | 3ad2ant1 | |
12 | supxrcl | |
|
13 | 12 | ad2antrr | |
14 | 4 | ad2antlr | |
15 | ssel2 | |
|
16 | 15 | adantlr | |
17 | xrlelttr | |
|
18 | 13 14 16 17 | syl3anc | |
19 | 18 | expdimp | |
20 | 19 | con3d | |
21 | 20 | exp41 | |
22 | 21 | com34 | |
23 | 22 | 3imp | |
24 | 11 23 | mpdd | |
25 | 7 | a1i | |
26 | xrsupss | |
|
27 | 25 26 | supub | |
28 | 27 | 3ad2ant2 | |
29 | 24 28 | jaod | |
30 | 6 29 | biimtrid | |
31 | 30 | ralrimiv | |
32 | rexr | |
|
33 | xrsupss | |
|
34 | 25 33 | suplub | |
35 | 32 34 | sylani | |
36 | elun2 | |
|
37 | 36 | anim1i | |
38 | 37 | reximi2 | |
39 | 35 38 | syl6 | |
40 | 39 | expd | |
41 | 40 | ralrimiv | |
42 | 41 | 3ad2ant2 | |
43 | supxr | |
|
44 | 3 5 31 42 43 | syl22anc | |