Metamath Proof Explorer


Theorem supxrun

Description: The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion supxrun A*B*supA*<supB*<supAB*<=supB*<

Proof

Step Hyp Ref Expression
1 unss A*B*AB*
2 1 biimpi A*B*AB*
3 2 3adant3 A*B*supA*<supB*<AB*
4 supxrcl B*supB*<*
5 4 3ad2ant2 A*B*supA*<supB*<supB*<*
6 elun xABxAxB
7 xrltso <Or*
8 7 a1i A*<Or*
9 xrsupss A*y*zA¬y<zz*z<ywAz<w
10 8 9 supub A*xA¬supA*<<x
11 10 3ad2ant1 A*B*supA*<supB*<xA¬supA*<<x
12 supxrcl A*supA*<*
13 12 ad2antrr A*B*xAsupA*<*
14 4 ad2antlr A*B*xAsupB*<*
15 ssel2 A*xAx*
16 15 adantlr A*B*xAx*
17 xrlelttr supA*<*supB*<*x*supA*<supB*<supB*<<xsupA*<<x
18 13 14 16 17 syl3anc A*B*xAsupA*<supB*<supB*<<xsupA*<<x
19 18 expdimp A*B*xAsupA*<supB*<supB*<<xsupA*<<x
20 19 con3d A*B*xAsupA*<supB*<¬supA*<<x¬supB*<<x
21 20 exp41 A*B*xAsupA*<supB*<¬supA*<<x¬supB*<<x
22 21 com34 A*B*supA*<supB*<xA¬supA*<<x¬supB*<<x
23 22 3imp A*B*supA*<supB*<xA¬supA*<<x¬supB*<<x
24 11 23 mpdd A*B*supA*<supB*<xA¬supB*<<x
25 7 a1i B*<Or*
26 xrsupss B*y*zB¬y<zz*z<ywBz<w
27 25 26 supub B*xB¬supB*<<x
28 27 3ad2ant2 A*B*supA*<supB*<xB¬supB*<<x
29 24 28 jaod A*B*supA*<supB*<xAxB¬supB*<<x
30 6 29 biimtrid A*B*supA*<supB*<xAB¬supB*<<x
31 30 ralrimiv A*B*supA*<supB*<xAB¬supB*<<x
32 rexr xx*
33 xrsupss B*x*zB¬x<zz*z<xyBz<y
34 25 33 suplub B*x*x<supB*<yBx<y
35 32 34 sylani B*xx<supB*<yBx<y
36 elun2 yByAB
37 36 anim1i yBx<yyABx<y
38 37 reximi2 yBx<yyABx<y
39 35 38 syl6 B*xx<supB*<yABx<y
40 39 expd B*xx<supB*<yABx<y
41 40 ralrimiv B*xx<supB*<yABx<y
42 41 3ad2ant2 A*B*supA*<supB*<xx<supB*<yABx<y
43 supxr AB*supB*<*xAB¬supB*<<xxx<supB*<yABx<ysupAB*<=supB*<
44 3 5 31 42 43 syl22anc A*B*supA*<supB*<supAB*<=supB*<