Metamath Proof Explorer


Theorem supxr

Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006) (Revised by Mario Carneiro, 21-Apr-2015)

Ref Expression
Assertion supxr A * B * x A ¬ B < x x x < B y A x < y sup A * < = B

Proof

Step Hyp Ref Expression
1 simplr A * B * x A ¬ B < x x x < B y A x < y B *
2 simprl A * B * x A ¬ B < x x x < B y A x < y x A ¬ B < x
3 xrub A * B * x x < B y A x < y x * x < B y A x < y
4 3 biimpa A * B * x x < B y A x < y x * x < B y A x < y
5 4 adantrl A * B * x A ¬ B < x x x < B y A x < y x * x < B y A x < y
6 xrltso < Or *
7 6 a1i < Or *
8 7 eqsup B * x A ¬ B < x x * x < B y A x < y sup A * < = B
9 8 mptru B * x A ¬ B < x x * x < B y A x < y sup A * < = B
10 1 2 5 9 syl3anc A * B * x A ¬ B < x x x < B y A x < y sup A * < = B