Metamath Proof Explorer


Theorem supxr2

Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006)

Ref Expression
Assertion supxr2 A*B*xAxBxx<ByAx<ysupA*<=B

Proof

Step Hyp Ref Expression
1 ssel2 A*xAx*
2 xrlenlt x*B*xB¬B<x
3 1 2 sylan A*xAB*xB¬B<x
4 3 an32s A*B*xAxB¬B<x
5 4 ralbidva A*B*xAxBxA¬B<x
6 5 anbi1d A*B*xAxBxx<ByAx<yxA¬B<xxx<ByAx<y
7 6 biimpa A*B*xAxBxx<ByAx<yxA¬B<xxx<ByAx<y
8 supxr A*B*xA¬B<xxx<ByAx<ysupA*<=B
9 7 8 syldan A*B*xAxBxx<ByAx<ysupA*<=B