Description: Any subset of extended reals has a supremum. (Contributed by NM, 25-Oct-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | xrsupss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrsupsslem | |
|
2 | ssdifss | |
|
3 | ssxr | |
|
4 | df-3or | |
|
5 | neldifsn | |
|
6 | 5 | biorfi | |
7 | 4 6 | bitr4i | |
8 | 3 7 | sylib | |
9 | xrsupsslem | |
|
10 | 2 8 9 | syl2anc2 | |
11 | xrsupexmnf | |
|
12 | snssi | |
|
13 | undif | |
|
14 | uncom | |
|
15 | 14 | eqeq1i | |
16 | 13 15 | bitri | |
17 | raleq | |
|
18 | rexeq | |
|
19 | 18 | imbi2d | |
20 | 19 | ralbidv | |
21 | 17 20 | anbi12d | |
22 | 16 21 | sylbi | |
23 | 12 22 | syl | |
24 | 23 | rexbidv | |
25 | 11 24 | imbitrid | |
26 | 10 25 | mpan9 | |
27 | ssxr | |
|
28 | df-3or | |
|
29 | 27 28 | sylib | |
30 | 1 26 29 | mpjaodan | |