Metamath Proof Explorer


Theorem xrsupss

Description: Any subset of extended reals has a supremum. (Contributed by NM, 25-Oct-2005)

Ref Expression
Assertion xrsupss A*x*yA¬x<yy*y<xzAy<z

Proof

Step Hyp Ref Expression
1 xrsupsslem A*A+∞Ax*yA¬x<yy*y<xzAy<z
2 ssdifss A*A−∞*
3 ssxr A−∞*A−∞+∞A−∞−∞A−∞
4 df-3or A−∞+∞A−∞−∞A−∞A−∞+∞A−∞−∞A−∞
5 neldifsn ¬−∞A−∞
6 5 biorfi A−∞+∞A−∞A−∞+∞A−∞−∞A−∞
7 4 6 bitr4i A−∞+∞A−∞−∞A−∞A−∞+∞A−∞
8 3 7 sylib A−∞*A−∞+∞A−∞
9 xrsupsslem A−∞*A−∞+∞A−∞x*yA−∞¬x<yy*y<xzA−∞y<z
10 2 8 9 syl2anc2 A*x*yA−∞¬x<yy*y<xzA−∞y<z
11 xrsupexmnf x*yA−∞¬x<yy*y<xzA−∞y<zx*yA−∞−∞¬x<yy*y<xzA−∞−∞y<z
12 snssi −∞A−∞A
13 undif −∞A−∞A−∞=A
14 uncom −∞A−∞=A−∞−∞
15 14 eqeq1i −∞A−∞=AA−∞−∞=A
16 13 15 bitri −∞AA−∞−∞=A
17 raleq A−∞−∞=AyA−∞−∞¬x<yyA¬x<y
18 rexeq A−∞−∞=AzA−∞−∞y<zzAy<z
19 18 imbi2d A−∞−∞=Ay<xzA−∞−∞y<zy<xzAy<z
20 19 ralbidv A−∞−∞=Ay*y<xzA−∞−∞y<zy*y<xzAy<z
21 17 20 anbi12d A−∞−∞=AyA−∞−∞¬x<yy*y<xzA−∞−∞y<zyA¬x<yy*y<xzAy<z
22 16 21 sylbi −∞AyA−∞−∞¬x<yy*y<xzA−∞−∞y<zyA¬x<yy*y<xzAy<z
23 12 22 syl −∞AyA−∞−∞¬x<yy*y<xzA−∞−∞y<zyA¬x<yy*y<xzAy<z
24 23 rexbidv −∞Ax*yA−∞−∞¬x<yy*y<xzA−∞−∞y<zx*yA¬x<yy*y<xzAy<z
25 11 24 imbitrid −∞Ax*yA−∞¬x<yy*y<xzA−∞y<zx*yA¬x<yy*y<xzAy<z
26 10 25 mpan9 A*−∞Ax*yA¬x<yy*y<xzAy<z
27 ssxr A*A+∞A−∞A
28 df-3or A+∞A−∞AA+∞A−∞A
29 27 28 sylib A*A+∞A−∞A
30 1 26 29 mpjaodan A*x*yA¬x<yy*y<xzAy<z