Metamath Proof Explorer


Theorem ssxr

Description: The three (non-exclusive) possibilities implied by a subset of extended reals. (Contributed by NM, 25-Oct-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion ssxr A*A+∞A−∞A

Proof

Step Hyp Ref Expression
1 df-pr +∞−∞=+∞−∞
2 1 ineq2i A+∞−∞=A+∞−∞
3 indi A+∞−∞=A+∞A−∞
4 2 3 eqtri A+∞−∞=A+∞A−∞
5 disjsn A+∞=¬+∞A
6 disjsn A−∞=¬−∞A
7 5 6 anbi12i A+∞=A−∞=¬+∞A¬−∞A
8 7 biimpri ¬+∞A¬−∞AA+∞=A−∞=
9 pm4.56 ¬+∞A¬−∞A¬+∞A−∞A
10 un00 A+∞=A−∞=A+∞A−∞=
11 8 9 10 3imtr3i ¬+∞A−∞AA+∞A−∞=
12 4 11 eqtrid ¬+∞A−∞AA+∞−∞=
13 reldisj A+∞−∞A+∞−∞=A+∞−∞+∞−∞
14 renfdisj +∞−∞=
15 disj3 +∞−∞==+∞−∞
16 14 15 mpbi =+∞−∞
17 difun2 +∞−∞+∞−∞=+∞−∞
18 16 17 eqtr4i =+∞−∞+∞−∞
19 18 sseq2i AA+∞−∞+∞−∞
20 13 19 bitr4di A+∞−∞A+∞−∞=A
21 12 20 imbitrid A+∞−∞¬+∞A−∞AA
22 21 orrd A+∞−∞+∞A−∞AA
23 df-xr *=+∞−∞
24 23 sseq2i A*A+∞−∞
25 3orrot A+∞A−∞A+∞A−∞AA
26 df-3or +∞A−∞AA+∞A−∞AA
27 25 26 bitri A+∞A−∞A+∞A−∞AA
28 22 24 27 3imtr4i A*A+∞A−∞A