Step |
Hyp |
Ref |
Expression |
1 |
|
unss |
|- ( ( A C_ RR* /\ B C_ RR* ) <-> ( A u. B ) C_ RR* ) |
2 |
1
|
biimpi |
|- ( ( A C_ RR* /\ B C_ RR* ) -> ( A u. B ) C_ RR* ) |
3 |
2
|
3adant3 |
|- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( A u. B ) C_ RR* ) |
4 |
|
supxrcl |
|- ( B C_ RR* -> sup ( B , RR* , < ) e. RR* ) |
5 |
4
|
3ad2ant2 |
|- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> sup ( B , RR* , < ) e. RR* ) |
6 |
|
elun |
|- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) |
7 |
|
xrltso |
|- < Or RR* |
8 |
7
|
a1i |
|- ( A C_ RR* -> < Or RR* ) |
9 |
|
xrsupss |
|- ( A C_ RR* -> E. y e. RR* ( A. z e. A -. y < z /\ A. z e. RR* ( z < y -> E. w e. A z < w ) ) ) |
10 |
8 9
|
supub |
|- ( A C_ RR* -> ( x e. A -> -. sup ( A , RR* , < ) < x ) ) |
11 |
10
|
3ad2ant1 |
|- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( x e. A -> -. sup ( A , RR* , < ) < x ) ) |
12 |
|
supxrcl |
|- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
13 |
12
|
ad2antrr |
|- ( ( ( A C_ RR* /\ B C_ RR* ) /\ x e. A ) -> sup ( A , RR* , < ) e. RR* ) |
14 |
4
|
ad2antlr |
|- ( ( ( A C_ RR* /\ B C_ RR* ) /\ x e. A ) -> sup ( B , RR* , < ) e. RR* ) |
15 |
|
ssel2 |
|- ( ( A C_ RR* /\ x e. A ) -> x e. RR* ) |
16 |
15
|
adantlr |
|- ( ( ( A C_ RR* /\ B C_ RR* ) /\ x e. A ) -> x e. RR* ) |
17 |
|
xrlelttr |
|- ( ( sup ( A , RR* , < ) e. RR* /\ sup ( B , RR* , < ) e. RR* /\ x e. RR* ) -> ( ( sup ( A , RR* , < ) <_ sup ( B , RR* , < ) /\ sup ( B , RR* , < ) < x ) -> sup ( A , RR* , < ) < x ) ) |
18 |
13 14 16 17
|
syl3anc |
|- ( ( ( A C_ RR* /\ B C_ RR* ) /\ x e. A ) -> ( ( sup ( A , RR* , < ) <_ sup ( B , RR* , < ) /\ sup ( B , RR* , < ) < x ) -> sup ( A , RR* , < ) < x ) ) |
19 |
18
|
expdimp |
|- ( ( ( ( A C_ RR* /\ B C_ RR* ) /\ x e. A ) /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( sup ( B , RR* , < ) < x -> sup ( A , RR* , < ) < x ) ) |
20 |
19
|
con3d |
|- ( ( ( ( A C_ RR* /\ B C_ RR* ) /\ x e. A ) /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( -. sup ( A , RR* , < ) < x -> -. sup ( B , RR* , < ) < x ) ) |
21 |
20
|
exp41 |
|- ( A C_ RR* -> ( B C_ RR* -> ( x e. A -> ( sup ( A , RR* , < ) <_ sup ( B , RR* , < ) -> ( -. sup ( A , RR* , < ) < x -> -. sup ( B , RR* , < ) < x ) ) ) ) ) |
22 |
21
|
com34 |
|- ( A C_ RR* -> ( B C_ RR* -> ( sup ( A , RR* , < ) <_ sup ( B , RR* , < ) -> ( x e. A -> ( -. sup ( A , RR* , < ) < x -> -. sup ( B , RR* , < ) < x ) ) ) ) ) |
23 |
22
|
3imp |
|- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( x e. A -> ( -. sup ( A , RR* , < ) < x -> -. sup ( B , RR* , < ) < x ) ) ) |
24 |
11 23
|
mpdd |
|- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( x e. A -> -. sup ( B , RR* , < ) < x ) ) |
25 |
7
|
a1i |
|- ( B C_ RR* -> < Or RR* ) |
26 |
|
xrsupss |
|- ( B C_ RR* -> E. y e. RR* ( A. z e. B -. y < z /\ A. z e. RR* ( z < y -> E. w e. B z < w ) ) ) |
27 |
25 26
|
supub |
|- ( B C_ RR* -> ( x e. B -> -. sup ( B , RR* , < ) < x ) ) |
28 |
27
|
3ad2ant2 |
|- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( x e. B -> -. sup ( B , RR* , < ) < x ) ) |
29 |
24 28
|
jaod |
|- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( ( x e. A \/ x e. B ) -> -. sup ( B , RR* , < ) < x ) ) |
30 |
6 29
|
syl5bi |
|- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( x e. ( A u. B ) -> -. sup ( B , RR* , < ) < x ) ) |
31 |
30
|
ralrimiv |
|- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> A. x e. ( A u. B ) -. sup ( B , RR* , < ) < x ) |
32 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
33 |
|
xrsupss |
|- ( B C_ RR* -> E. x e. RR* ( A. z e. B -. x < z /\ A. z e. RR* ( z < x -> E. y e. B z < y ) ) ) |
34 |
25 33
|
suplub |
|- ( B C_ RR* -> ( ( x e. RR* /\ x < sup ( B , RR* , < ) ) -> E. y e. B x < y ) ) |
35 |
32 34
|
sylani |
|- ( B C_ RR* -> ( ( x e. RR /\ x < sup ( B , RR* , < ) ) -> E. y e. B x < y ) ) |
36 |
|
elun2 |
|- ( y e. B -> y e. ( A u. B ) ) |
37 |
36
|
anim1i |
|- ( ( y e. B /\ x < y ) -> ( y e. ( A u. B ) /\ x < y ) ) |
38 |
37
|
reximi2 |
|- ( E. y e. B x < y -> E. y e. ( A u. B ) x < y ) |
39 |
35 38
|
syl6 |
|- ( B C_ RR* -> ( ( x e. RR /\ x < sup ( B , RR* , < ) ) -> E. y e. ( A u. B ) x < y ) ) |
40 |
39
|
expd |
|- ( B C_ RR* -> ( x e. RR -> ( x < sup ( B , RR* , < ) -> E. y e. ( A u. B ) x < y ) ) ) |
41 |
40
|
ralrimiv |
|- ( B C_ RR* -> A. x e. RR ( x < sup ( B , RR* , < ) -> E. y e. ( A u. B ) x < y ) ) |
42 |
41
|
3ad2ant2 |
|- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> A. x e. RR ( x < sup ( B , RR* , < ) -> E. y e. ( A u. B ) x < y ) ) |
43 |
|
supxr |
|- ( ( ( ( A u. B ) C_ RR* /\ sup ( B , RR* , < ) e. RR* ) /\ ( A. x e. ( A u. B ) -. sup ( B , RR* , < ) < x /\ A. x e. RR ( x < sup ( B , RR* , < ) -> E. y e. ( A u. B ) x < y ) ) ) -> sup ( ( A u. B ) , RR* , < ) = sup ( B , RR* , < ) ) |
44 |
3 5 31 42 43
|
syl22anc |
|- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> sup ( ( A u. B ) , RR* , < ) = sup ( B , RR* , < ) ) |